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Abstract—Gallager mapping uses different signal points with 

different probabilities by assigning several labels for one signal 

point, and thus provides a promising approach to achieving 

shaping gains. An important issue in Gallager mapping is how to 

assign labels for signal points. In this paper, two optimized 

design rules for Gallager mapping of bit-interleaved coded 

modulation scheme with iterative decoding (BICM-ID) are 

proposed, where the Hamming distance among the labels for one 

signal point should be minimized. The extrinsic information 

transfer (EXIT) technique is utilized to design and analyze the 

proposed mapping patterns. Compared with conventional 

Gallager mapping, our proposed method provides extra shaping 

gain for the LDPC-coded BICM-ID system. And our proposed 

method supplies better performance than conventional uniform 

mapping with the same spectrum efficiency. 
 

Index Terms—low-density parity-check (LDPC) codes, Gal- 

lager mapping, quantization mapping, bit-interleaved, iterative 

decoding. 
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I.  INTRODUCTION 

In classical communication theory, coding and modulation 

had been treated as two separate parts. However, in recent 

decades, some new techniques [1]–[5] which integrate coding 

and modulation were devised to improve the performance of 

system. 

The thinking of combined coding and modulation 

design was first suggested by Massey in [6] and then 

developed by Ungerboeck (trellis-coded modulation, TCM) 

[1] and Imai (multilevel coding, MLC) [2]. TCM scheme 

performs good over the Additive White Gaussian Noise 

(AWGN) channels but not so good over fading channels. 

Moreover, the complexity of MLC was very high because 

the multistage decoder costs too much. In 1992, a scheme 

named bit-interleaved coded modulation (BICM) was first 
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introduced by Zehavi [3], and then developed by Li [7] as 

BICM with iterative decoding (BICM-ID). In past years, 

BICM-ID scheme with turbo-like decoding had been found 

very good performance over both AWGN and fading 

channels [4]. 

By Shannon’s Information Theory, the shaping gain with 

non-uniform input signal and multi-dimensional signal 

constellation can asymptotically approach 1.53 dB at most 

[8]. As so far, a few approaches [10]–[14] have been 

developed to provide this kind of shaping gain. Among 

which, non-uniformly spaced signals [11] with equal 

probability were extensively studied [10], [12], while another 

kind of shaping method with non-equiprobable signals 

attracted little attention [9], [13]. Quantization mapping 

works by generating non-uniform distribution of signal 

probabilities to approach the optimum input distributions. For 

the first introduction by Gallager in [8], quantization mapping 

is also called Gallager mapping. In 2004, a scheme using 

Gallager mapping and maximum likelihood (ML) decoding 

was proposed by Bennatan [9], and it could provide some 

shaping gain. However, the mapping distribution he used in 

the mapper was not optimally designed and the ML decoding 

prohibited practical applications for long codes.  

In this paper, an improved Gallager mapping scheme for 

the BICM-ID system based on low-density parity-check 

(LDPC) codes is presented, where the extrinsic messages are 

transferred between the LDPC decoder and the signal 

demapper. No extra shaping code is needed in the proposed 

scheme, and the improvement of Gallager mapping results in 

no extra complexity for communication systems. 

II.  SYSTEM MODEL 

The system proposed in this paper is described in Fig. 1, 

where LDPC codes and quantization mapper are utilized. 

Assume a two-dimensional constellation 

 | 0 1,X i ia i M a      of size M is used. The input 

vector  0 1 1, , , Ku u u u  of information symbols is first 

encoded by the LDPC encoder into a codeword 

 0 1 1, , , Nc c c c , then interleaved and producing a bit 

sequence  110 ,,,  Nvvv v . The Gallager mapper 

generates signal vectors  0 1, , , ,jx x xx  with 

 j jx v , where j denotes the index of the modulated 

symbols,    stands for the signal mapping function and 
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 ,1 ,2 ,, , ,j j j j Tv v v   v  is a T-bit-length vector which 

extracted from v , and the value of T depends on the mapping 

function   . 

Suppose the complex signal vector x is transmitted over 

the AWGN channel. The received vector 

 0 1, , , ,jy y yy  is then given by 

j j jy x n                                   (1) 

where  0~ 0,jn CN N are independent and identically 

distributed complex Gaussian random variables with zero 

mean and variance 
0 / 2N  per dimension.  

 

 

Fig.1 Block diagram of the system model 

At the receiver, the received signal y  from the channel is 

firstly processed by the Gallager demapper, and the extrinsic 

information eL  is delivered to the LDPC decoder after the 

interleaving. Then the output extrinsic information of the 

demapper is de-interleaved and fed back to the LDPC 

decoder as the a priori information aL . This iterative process 

continues until certain condition is satisfied. 

The Gallager demapper processes the received symbol jy  

and the corresponding a priori log-likelihood ratio (LLR)  
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where 0,1,2,...j  ,and 1,2,...,t T  to generate the extrinsic 

information eL  as follows,  
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which is then delivered to the LDPC decoder and taken as the  

a priori information for decoding. Next, the extrinsic 

information of the LDPC decoder should be fed back to the 

Gallager demapper as the a priori information. Apparently, 

the demapper and decoder exchange the extrinsic information 

in an iterative manner.  

III.  IMPROVED GALLAGER MAPPING 

A. Quantization Mapping 

Let   | XP x x  be a probability mass function set 

associated with constellation 
X

. For a conventional signal 

mapper, the signal points are used with equal possibility, and 

the corresponding mapping function can be expressed as 

  1/P x M .  

Definition 1. As described in [8], A quantization 

     : 0,1
T

XP x
Q  v  is a mapping from labels u  of 

length T  to 
Xx , such that the number of labels mapped 

to x  is  2T P x . For brevity, we use  Q v  for 

   P x
Q v .  

Note that,  P x  can be a non-uniform distribution. Thus 

when applying the quantization mapping distribution to input 

sequences, the resulted signals  0 1, , , ,jx x x over the 

constellation space has the potential to provide shaping gain. 
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Fig.2 An example of quantization mapping 

Example 1. Quantization mapping for 2-bit-length symbols  

An example is presented to help understanding the 

definition of quantization mapping. The two points of the 

constellation are used with the unequal probability of 3 / 4 ,  
1/ 4 , respectively. In this paper, all symbol sequences which 

are corresponding to a same point are called labels within a 

group, and are shown in Fig. 2.  

B. Optimal Input Distribution 

Let X  denotes the transmitted symbol, Y  denotes the 

received symbol. The channel capacity will be approached 

when the mutual information  ;I X Y  is maximized. For a 

discrete-time memoryless AWGN channel, according to [16], 
X  should be subjected to Gaussian distributed to maximize 

the mutual information  ;I X Y .  

Lemma 1. If a random variable satisfy the following 

restriction 

  
22

v p v v m dv



                       (4) 

, where v   and m  are the covariance and mean value of 

v , respectively. Then 

  log 2 vH V e                          (5) 

with equality if and only if v  is subject to Gaussian 
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distribution, where V is the set of v , and  H V  denotes 

the entropy of V . 

Theorem 1. For a discrete-time memoryless AWGN 

channel, the optimal input distribution of X , which 

maximizes the mutual information  YXI ;  is subject to 

Gaussian distribution. 

Let  ;C MaxI X Y , where C  denotes channel 

capacity, since 

         ; |I X Y H Y H Y X H X N H N      (6) 

According to Lemma 1, X  should be Gaussian 

distributed to achieve the channel capacity. 

In 2004 [9], Bennatan found some good non-uniform input  
distributions close to optimal distribution for the discrete-

time AWGN channel. However, the mapping labels in natural 

(ascending or descending) order were used in his scheme, 

which resulted performance loss for practical schemes.  

C. Improved Gallager Mapping 

As pervious description, for Gallager mapping, every 

constellation point may correspond to one or more coded 

symbol sequences. The problem of finding good mapping 

patterns is how to design the probabilities of every point and 

which labels should be assigned into a same group. Based on 

the theory of optimal input distribution and the characteristic 

of overlapped labels in Gallager mapping, we propose two 

mapping rules to solve the problem and improve the 

performance of BICM-ID system with Gallager mapping. 

And the academic explanations will be given in section IV. 

 

Rule 1: Let the probability mass function of the signal 

points in the employed constellation approach the discrete-

time Gaussian distribution;  

Rule 2: Try to minimize the Hamming distance among the 

different labels within every group.  

 

Note that the mathematical  demonstrat ion of  Rule 

1 has been given in the foregoing Section III B for  a 

discrete signaling over an AWGN channel, the output of the 

mapper should follow the discrete Gaussian distribution as 

much as possible. While according to Rule 2, the number of 

reliable coded bits is guaranteed to be as large as 

possible when recovering the coded bits sequences from the 

signal points. In other words, the number of bits recovered 

with low reliability is as few as possible by Rule 2. 

Unfortunately, it is hardly to analysis Rule 2 by mathematical 

equations, so computer-based analysis and simulations will 

be provided in the next sections. 

IV.  ANALYSIS OF PROPOSED GALLAGER MAPPING 

In the previous section, two rules for the improved 

Gallager mapping method based on BICM-ID system are 

presented. To further illustrate the effect of the proposed 

mapping rules and find good mapping patterns, the technique 

of EXIT chart [15] is employed to analyze the iterative 

system. 

As is known, the LDPC decoder can be seen as 

concatenation of variable-node decoder (VND) and check-

node decoder (CND). Thereby, we could expressly partition 

the receiver in Fig. 1 into two blocks, which is depicted in Fig. 

3, where block A mainly consists of the demapper and 

variable-node decoder, and block B solely comprises the 

check-node decoder. AI , BI and DI  denote the mutual 

information at the output end of block A, B, and demapper, 

respectively. 

 

 

Fig. 3.    EXIT Chart analysis model of our scheme 

At the receiving end, the Soft-In-Soft-Out (SISO) 

demapper processes the channel-corrupted sequences, and 

generates the posteriori log-likelihood ratios (LLRs) to the 

LDPC decoder for reconstruction. Indeed, the information 

exchange not only exists between the SISO demapper and the 

decoder, but also inside the LDPC decoder. Hence, based on 

Fig. 3, the overall decoding process can be formulated as 

follows. 

Step 1. The SISO modulator computes LLRs and sends 

them to the LDPC VND after de-interleaving, and the 

output of LDPC VND is what block B received from block 

A. 

Step 2. The LDPC CND, i.e., block B operates on the 

received extrinsic information to compute what to be 

passed to block A. 

Note that only extrinsic information is exchanged in 

between. Hence, it is possible to draw EXIT curves for both 

blocks. According to [17], [18] the approximate formulas to 

compute AI  and BI  are given as follows. 

 11 1 (1 )B j A

j

I J j J I         (7) 

 1 2 1 2( 1)( ( ) ) ( ( ) )A j B D

j

I J i J I J I         (8) 

, where the details of the ( )J  function was defined in 

[17], and ( )x , ( )x  express the degree distributions of 

LDPC codes. 

Then given a regular LDPC code assemble (3,6)C  over 

the AWGN channel, the design of good Gallager mapping 

patterns will be presented by EXIT Chart analysis. As is 

known, the best performance will be achieved when the 

curves of variable-node decoder and signal demapper 
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(VND+DE) properly match the curves of CND. There is no 

relationship between the CND curve and the channel state 

information, that is to say, we just need to design a good 

mapping pattern to make sure that the VND+De curve must 

not cross the fixed CND curve at a certain SNR as low as 

possible. 

According to the previous two Gallager mapping rules and 

the analyses of EXIT Chart, two mapping examples 

using 1-dimensional and 2-dimensional signaling are 

presented to clarify the proposed improved Gallager mapping 

method. 

 
Example 2. 8-PAM Gallager mapping 

Fig. 4 shows the conventional Gallager mapping and the 

improved Gallager mapping for an 8-ary Pulse Amplitude 

Modulation (8-PAM) constellation. Here, 16 length-4 coded 

symbol sequences are mapped to the 8-PAM constellation 

with unequal probabilities. Obviously, for conventional 

Gallager mapping, the maximum Hamming distance D 

max(D )  within every group is 2 or 3, and the average 

Hamming distance (D )ave
 within  every  group  is  2  or  4/3.  

For  the  improved mapping method, 
maxD  within every 

group is 2 and Dave
 within each group is 4/3, which are equal 

to or less than that of conventional mapping method. 

 

Fig. 4.  Gallager mapping for 8-PAM constellation 

Example 3. 16-QAM quantization mapping 

Fig. 5 provides another example of 2-dimensional 

signaling. Here, 32 length-5 coded symbol sequences are 

mapped to traditional 16-ary Quadrature Amplitude 

Modulation (16-QAM) constellation. The maxD  and Dave  

are also reduced by using the proposed mapping rules, 

which thus provides improvement for extra shaping gain. 

Due to lack of space, only the improved mapping 

constellation is provided here. In the following, the 

corresponding EXIT Chart analysis curves of the two 

examples will be provided, too. 

 

Fig. 5.    Improved Gallager mapping for 16-QAM constellation 

 

Fig. 6 and 7 show the EXIT Chart analyses of the 

improved Gallager mapping and the conventional Gallager 

mapping and some traditional mappings ( such as Gray 

mapping and Anti-Gray mapping). It can be seen that there 

is an open and narrow tunnel between the improved 

VND+DE curve and the CND curve in each chart. On the 

contrary, the conventional curves cross each other which 

bring in incorrigible errors and result in performance loss.  

 
Fig. 6. EXIT Chart analysis for 8-PAM Gallager mapping, 

0/ 9.6bE N dB  

 

 

Fig. 7.    EXIT Chart analysis for 16-QAM Gallager mapping,   

0/ 5.4bE N dB  

By EXIT Chart analyses, we also get the threshold of the 



20  ELECTRONICS, VOL. 20, NO. 1, JUNE 2016  

 

proposed scheme. That is to say, when 
0/bE N  is larger 

than 9.6 dB or 5.4 dB, respectively, the two proposed 

schemes can successfully work without any errors by using 

good enough channel codes. 

V.  SIMULATION RESULTS 

In this section, a rate-1/2, length-9216 regular binary 

(3,6) LDPC  code  from  China  Mobile  Multimedia  

Broadcasting (CMMB) [19] and a rate-2/3 length-9216 

regular (3,9) LDPC code will be used to demonstrate the 

effectiveness of our proposed mapping method for the 

LDPC-coded BICM-ID system over AWGN channels. As 

known, the standard sum- product decoding algorithm (SPA) 

is the most popular algorithm for LDPC decoding [20], and 

the most common number of iteration should be 50. To 

ensure the fairness of comparison between the proposed 

Gallager-mapping-based system and the traditional system, 

the maximum inner iteration number of our proposed 

LDPC decoder is set to be 10, and furthermore, the outer 

iteration number between the demapper and LDPC decoder 

is set to be 5. So the computational complexity of our 

proposed scheme is almost the same as the traditional 

LDPC- coded BICM-ID scheme. 

Fig. 8 shows the performance of length-4 symbols 

which are mapped to the conventional 8-PAM (shown in Fig. 

4) and conventional 16-PAM set by using the rate-1/2 LDPC 

code. At the BER of 
510  , almost 0.5 dB and 0.2 dB of 

extra shaping gain are attained by proposed Gallager 

mapping over the  conventional Gallager mapping and 

traditional 16-PAM mapping, respectively. The spectral 

efficiency of the proposed scheme is 2 bit/s/Hz. Fig. 9 shows 

the performance of length-4 symbols which are mapped to the 

conventional 8-PAM set(shown in fig. 4) and conventional 

16-PAM set by using the rate-2/3 LDPC code. Similar results 

will be obtained. At the BER of 10−5, almost 1.2 dB and 0.2 

dB of extra shaping gain are attained by proposed Gallager 

mapping over the conventional Gallager mapping and 

traditional 16-PAM mapping, respectively. The spectral 

efficiency of the proposed scheme is 2.67 bit/s/Hz. 

 

Fig. 8.    Performance of 8-PAM Gallager mapping, R=1/2 

 

 

Fig. 9.   Performance of 8-PAM Gallager mapping，R=2/3 

As known, 16-QAM signaling is one of the most popular 

modulation types in modern digital communication 

system. Fig. 10 shows the performance of different 

modulation schemes with the same spectral efficiency of 

2.5 bit/s/Hz. It can be observed that, at the BER of 510 , 

the proposed Gallager mapping outperforms the 

conventional Gallager mapping by 1dB and is 0.2 dB 

better than the conventional 32-QAM with outer iteration. 

 

 

Fig. 10.   Performance of 16-QAM Gallager mapping，R=1/2 

 

Fig. 11.   Performance of 16-QAM Gallager mapping，R=2/3 
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Fig. 11 shows the performance of different modulation 

schemes with the same spectral efficiency of 3.33 bit/s/Hz. 

Comparing with the conventional Gallager mapping and the 

traditional 32-QAM mapping, our improved Gallager 

mapping obtain 1.2 dB and 0.2 dB extra shaping gain, 

respectively. 

VI.  CONCLUSION 

In this paper, we presented an improved Gallager mapping 

method for the BICM-ID scheme based on LDPC codes, 

which could generate Gaussian-like input distributions and 

improved mapping within each group to obtain extra shaping 

gain without any other shaping codes. In fact, the proposed 

scheme could be generalized to any codes with iterative 

decoding, such as turbo-like codes. 

The EXIT chart analyses were used to optimize the 

mapping patterns and supply some information-theoretic 

explanations for the proposed method. The threshold of the 

proposed scheme was improved obviously. Numerical results 

demonstrated that the proposed scheme were not only much 

better than conventional Gallager mapping, but also a little bit 

better than BICM-ID systems based on traditional uniform 

mapping with the same spectral efficiency. 

The advantages of the proposed scheme are manifested in 

two aspects: 1) BER performance is improved because of the 

extra shaping gain and coding gain; 2) Higher spectral 

efficiency can be achieved by using lower-order modulation 

types, which can decrease the complexity of the signal 

mapper. The above advantages will make it to be an attractive 

candidate for future communication systems with turbo-

principle-based receivers. 
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