

Abstract—Modern day field programmable gate arrays

(FPGAs) have very huge and versatile logic resources resulting in

the migration of their application domain from prototype

designing to low and medium volume production designing.

Unfortunately most of the work pertaining to FPGA

implementations does not focus on the technology dependent

optimizations that can implement a desired functionality with

reduced cost. In this paper we consider the mapping of simple

ripple carry fixed-point adders (RCA) on look-up table (LUT)

based FPGAs. The objective is to transform the given RCA

Boolean network into an optimized circuit netlist that can

implement the desired functionality with minimum cost. We

particularly focus on 6-input LUTs that are inherent in all the

modern day FPGAs. Technology dependent optimizations are

carried out to utilize this FPGA primitive efficiently and the

result is compared against various adder designs. The

implementation targets the XC5VLX30-3FF324 device from

Xilinx Virtex-5 FPGA family. The cost of the circuit is expressed

in terms of the resources utilized, critical path delay and the

amount of on-chip power dissipated. Our implementation results

show a reduction in resources usage by at least 50%; increase in

speed by at least 10% and reduction in dynamic power

dissipation by at least 30%. All this is achieved without any

technology independent (architectural) modification.

Index Terms— FPGA, LUT, FPGA primitives, Technology

mapping, Boolean Network.

Original Research Paper

DOI: 10.7251/ELS1519014K

I. INTRODUCTION

IELD programmable gate arrays provide an alternative

approach to application specific integrated circuits (ASIC)

implementation [1] with features like large-scale integration,

design verification post production, lower non-recurring

engineering (NRE) costs, reconfigurable design approach etc.

[2, 3]. FPGAs also offer an attractive platform for

development of novel systems for rapid system prototyping

Manuscript received 30 October 2014. Received in revised form 27 March

2015. Accepted for publication 10 May 2015.

Burhan Khurshid is with the Department of Computer Science and

Engineering, NIT, Srinagar, India (phone: +91-9797875163; e-mail:

burhan_07phd12@nitsri.net).

Roohie Naaz is with Faculty of Computer Science and Engineering, NIT,

Srinagar, India (e-mail: naaz310@nitsri.net).

and low to medium volume productions [1, 4, 5, 6]. Most of

the modern day FPGA devices contain programmable logic

blocks that have look-up table (LUT) as the basic

programmable logic element [7, 8]. A k-input LUT is a digital

memory that can implement any Boolean function of k

variables. The k inputs in an LUT address 2k storage elements

that store the truth table of the Boolean function. LUT based

FPGAs account for a significant part of the commercial FPGA

market [9, 10].

Since their genesis in 1985 [10], FPGAs have evolved

enormously with state-of-art devices having in-built full

custom processing elements like multipliers, DSP blocks, fast

carry chains, high speed clocking, I/O resources etc. [11, 12,

13]. These blocks are highly optimized in terms of speed or

area thereby facilitating efficient realization of complex

functions [14, 15]. One of the major changes in the FPGA

architecture has been the introduction of 6-input LUT as a

logic element [11, 16]. With this FPGA primitive, the logic

implementation would lead to higher logic densities resulting

in a minimal-depth circuit and hence higher speed - a trend

towards which the current FPGAs are oriented [17, 18, 19].

Perhaps the biggest issue with 6-input LUTs is their under-

utilization while implementing a particular logic function,

since many logic functions do not require six inputs [10]. This

leads to low logic density and thus slower structures. Although

many FPGA vendors have designed these elements with dual

output capabilities [17, 18], their usage in implementing a

Boolean function still remains far from the optimum.

Another issue is regarding the technology mapping of

Boolean networks representing a combinational function.

Logic synthesis in FPGAs has a well-defined flow that starts

with design entry and proceeds through phases like synthesis,

translation, mapping and place and route (PAR). Technology

mapping is one of the most important phases in the FPGA

computer aided design (CAD) flow that is directly concerned

with selecting the circuit elements that will implement a given

Boolean network [1, 7]. For LUT based FPGAs the target

circuit element is the k-input LUT. Technology mapping is

always cost driven. The goal is to produce a minimum-cost

circuit that implements a desired Boolean function [1, 7, 8].

The cost of the circuit is typically a measure of its area, speed,

power or a combination of these and accordingly there are

algorithms that drive the technology mapping process towards

area optimization [19, 20, 21, 22, 23, 24], delay optimization

Cost Effective Implementation of Fixed Point

Adders for LUT based FPGAs using

Technology Dependent Optimizations

Burhan Khurshid and Roohie Naaz

F

14 ELECTRONICS, VOL. 19, NO. 1, JUNE 2015

[25, 26, 27, 28, 29, 30], power optimization [31, 32, 33, 34,

35, 36], or area and delay optimization [37, 38, 39, 40, 41].

Modern day commercially available tools from leading

vendors like Xilinx and Altera have fully automated

technology mapping. The technology mappers in these tools

take the native generic circuit (NGC) file from synthesis and

create a native circuit description (NCD) file as per the desired

cost function. The NCD file contains the physical description

of design in terms of the components in the target device. Thus

the mapping process is fully automated and the designer has no

control over the selection of circuit elements that will

implement the given function.

In this paper, we aim at tackling these two issues. The

contributions of this paper are:

i) We re-design the initial Boolean network for RCA based

adders for area, speed, and power optimality. Achieving

area and power optimality for Boolean networks with

inputs greater than four is NP-hard [31, 42, 43], however,

since the basic cell in RCA based fixed point adders is

very simple our approach simultaneously addresses the

area, speed and power issues and a complete utilization of

6-input LUTs is assured. We do not particularly use any

of the algorithms listed previously but our approach uses a

combination of techniques like node decomposition,

exploiting re-convergent nodes, logic replication etc.

ii) Since design entry is the only manual phase in the FPGA

design flow, we try to control the mapping of the Boolean

networks at the design entry step only. This involves

modifying the coding style and writing VHDL codes for

optimized Boolean networks based on direct instantiations

of the targeted circuit elements. This is in contrast to the

conventional coding styles that are typically behavioral

and rely completely on the synthesizer to map the Boolean

network by inferring the logic.

We have compared our implementation results against

various adder designs listed in [44]. Our implementation

results show a reduction in resources usage by at least 50%;

increase in speed by at least 10% and reduction in dynamic

power dissipation by at least 30%. We have also compared our

implementation against the Xilinx IP adder v 11.0 and a

subsequent improvement in performance is observed.

The rest of the paper is organized as follows. Section II

discusses some basic terminology used in this paper. Section

III discusses the basic technology mapping of the Boolean

network corresponding to the RCA cell on LUTs. In section

IV we redesign the initial Boolean network to ensure proper

utilization of the 6-input LUT. Synthesis and implementation

is carried out in section V. Conclusions are drawn in section

VI. References are listed at the end.

II. DEFINITIONS AND TERMINOLOGY

A Boolean network is a directed acyclic graph (DAG) with

nodes corresponding to logic gates, primary inputs and

primary outputs and directed edges corresponding to wires

connecting the gates. Since the Boolean networks considered

in this paper are simple full-adder circuits, we will use actual

gates for nodes. Further the term network will be used to refer

to a Boolean network representing a combinational function

and the term circuit will be used to refer to a Boolean network

representing a circuit net-list i.e. a network of connected

LUTs.

A node in a network may be driven by zero or more

predecessor nodes known as fan-in nodes and may drive zero

or more successor nodes known as fan-out nodes. The primary

inputs (PIs) of the network are nodes without any fan-in.

Similarly primary outputs (POs) are nodes without any fan-out.

A network is said to be k-bounded if the number of fan-ins of

each node does not exceed k.

The level of a node is the length of the longest path from any

PI to the node. The node itself is counted in the path length. In

this paper we have considered buffered inputs and outputs so

that PIs and POs also contribute to the network depth which is

defined as the largest level of a node in the network. The delay

and area of a mapped circuit is measured by the depth and

number of LUTs respectively.

A cone of a node v, Cv, is a sub-graph consisting of the node v

and some of its non-PI predecessors, such that any node in this

cone has a path to the node v that lies entirely in Cv. Node v is

referred to as the root of the cone.

III. MAPPING THE BASIC RCA CELL

Addition is one of the basic operations in digital signal

processing (DSP) systems. It is used as a primitive operation in

various arithmetic circuits like multipliers, multiply-adders etc.

In order to maximize the performance of the adder circuit

various technology independent (architectural) approaches

have been used. However, this work focuses on carrying out

the technology dependent optimization of the conventional

ripple carry adder on LUT based FPGAs.

Technology mapping using LUTs is a two step process. In

the first step, the entire network is partitioned into suitable

sub-networks. The individual nodes within each sub-network

are then covered with suitable cones. The logic implemented

by each cone is then mapped onto a separate LUT and an

optimal LUT net-list is obtained. In the second step, the net-

list for the entire network is constructed by assembling the

individual net-lists. The overall goal is to have a circuit

implementation that uses minimum possible LUTs and has

minimum possible depth.

The basic cell in an RCA network is a full adder. Fig. 1

shows the Boolean network for a full adder circuit. The

network is partitioned into two sub-networks corresponding to

sum (S) and carry (C), by dividing it at fan-out nodes. Each

sub-network is separately mapped into a circuit of LUTs by

covering the individual nodes with suitable cones. A straight

forward approach would be to cover each node within a sub-

network with a separate cone. The sub-network is then

traversed in post-order depth-first fashion and each cone is

assigned to a separate LUT as shown in Fig. 2(a). The number

at the lower-right corner of each LUT indicates the level of the

LUT assuming each LUT has a delay of one unit. The overall

depth of the circuit at PO nodes S and C is four (including the

buffers at PIs and POs). The total number of LUTs needed is

six. The number of LUTs may be reduced by decomposing the

3-input OR gate in the carry sub-network. The decomposed

node is included in two separate cones and the sub-network is

ELECTRONICS, VOL. 19, NO. 1, JUNE 2015 15

again traversed in post-order depth-first fashion to have a

circuit implementation of Fig. 2(b). The number of LUTs is

now reduced to three. However, an optimal implementation

may be obtained by exploiting the reconvergent PI nodes in

the carry circuit. Reconvergent nodes share the same inputs

and can be exploited to reduce the number of PIs to a sub-

network. This is shown in Fig. 2(c) where the reconvergent

paths are included within the LUTs and the circuit is

implemented with a single LUT for each sum and carry sub-

network. The number of LUTs utilized is two and the overall

depth including the buffers at PIs and POs is three. An n-bit

adder implemented using the optimized circuit of Fig. 2(c) will

have an overall depth of n+2 and will require 2n LUTs.

 a b c a b b c c a

 S C
Fig. 1. Basic RCA cell.

2

 2

 3

text

text

text

text

text

text

 2

 3

 2 2 2

 3

2

2

 a b c a b b c c a a b c a b b c c a a b c a b c

 S C S S C

C

(a) (b) (c)

Fig. 2. Mapping of the RCA cell. a) Direct Mapping. b) Mapping using node decomposition c) Mapping exploiting reconvergent nodes.

The following instantiations were used in the design entry

phase to map the circuit in Fig. 2(c).
begin

-- Optimal mapping for sum output

L_1 : LUT3_L generic map (INIT => X"96")

port map (S, c, b, a);

-- Optimal mapping for carry output

L_2 : LUT3_L generic map (INIT => X"E8")

port map (C, c, b, a);

end Behavioral;

IV. OPTIMAL MAPPING FOR 6-INPUT LUT

The circuit in Fig. 2(c) may be an optimal circuit for a 3-

input LUT but when the target element is a 6-input LUT, it

leads to severe under-utilization of the resources resulting in a

low-density circuit. Since most of the modern day FPGAs have

6-input LUTs as their basic logic element, it is compelling to

devise a method that utilizes this circuit element efficiently.

We counter this issue by considering two RCA cells

simultaneously and restructuring the initial Boolean network

so that the circuit obtained after transformation utilizes the

targeted 6-LUT efficiently. Fig. 3(a) shows the Boolean

network that corresponds to two full adder cells. The network

may be partitioned into three separate sub-networks

corresponding to two sum bits S(0) and S(1) and a carry bit

C(1). The reconvergent nodes in the carry sub-network are

exploited to reduce the number of inputs and a circuit

implementation similar to Fig. 2(c) is obtained. This is shown

in Fig. 3(b). However, an optimal 6-input LUT implementation

may be achieved by replicating the logic at fan-out node Z as

shown in Fig. 4(a). The replicated nodes are shown by shaded

portions. Node replication ensures that the sub-networks S(1)

and C(1) have the same inputs. The covering process covers

the individual networks with suitable cones and each cone is

mapped onto a separate LUT. Sub-networks S(1) and C(1)

share the same inputs and are implemented using a single 6-

LUT with dual outputs. The overall circuit is shown in Fig.

4(b). The depth of the circuit is three and the number of LUTs

utilized is two. An n-bit adder implemented using this circuit

will have an overall depth of (n/2)+2 and will utilize only n

LUTs. Thus the implementation based on Fig. 4(b) is

theoretically 50% more efficient than the one based on

Fig. 2(c). Fig. 5 shows an 8-bit adder unit constructed using

the optimized circuit of Fig. 4(b).

16 ELECTRONICS, VOL. 19, NO. 1, JUNE 2015

 a(0) b(0) c(0) a(0) b(0) b(0) c(0) c(0) a(0)

 S(0) C(0)

 a(1) b(1) C(0) a(1) b(1) b(1) C(0) C(0) a(1)

 S(1) C(1)

2

 a(0) b(0) c(0) a(0) b(0) c(0)

S(0)

 a(1) b(1) a(1) b(1)

 S(1) C(1)

2
2 3 3

Z

(a)
(b)

Fig. 3. a) Logic diagram for a 2-bit RCA adder. b) Mapping using 3-input LUTs.

2

 a(0) b(0) c(0) a(0) b(0) c(0) a(0) b(0) c(0)

S(0)

 a(1) b(1) a(1) b(1)

 S(1) C(1)

 a(0) b(0) c(0) a(1) b(1) a(0) b(0) c(0) a(1) b(1) a(0) b(0) c(0)

S(0)

 S(1) C(1)

 2

2

(a) (b)
Fig. 4. a) Logic replication at node Z. b) Optimal 6-input LUT implementation.

The following instantiations were used in the design entry

phase to map the circuit in Fig. 4(b).
begin

-- Optimal mapping for S(0) output

L_1: LUT3_L generic map (INIT => X"96")

port map (S(0), c(0), b(0), a(0));

-- Optimal mapping for S(1) and C(1) output

L_2: LUT6_2 generic map (INIT => X"E81717E8FFE8E800")

port map (C(1), S(1), c(0), b(0), a(0), b(1), a(1), '1');

end Behavioral;

V. SYNTHESIS AND IMPLEMENTATION

A. Methodology

The implementation in this work targets the XC5VLX30-

3FF324 device from Xilinx Virtex-5 FPGA family. The

implementation is carried out for an input word-length varying

from 8 to 64 bits. The parameters considered are area, timing

and dynamic power dissipation. Area is considered in terms of

the number of occupied slices. Timing analysis may be static

or dynamic. Static timing analysis gives information about the

delay associated with the critical path and the maximum

frequency at which the design may be operated. Dynamic

timing analysis verifies the functionality of the design by

applying test vectors and checking for correct output vectors.

Dynamic timing analysis is done post implementation and

PAR. The quality of dynamic timing analysis depends on the

number of test vectors used. An important result from dynamic

timing analysis is the switching activity information (toggle

rates, signal rates etc.). This information is captured in the

value charge dump (VCD) file and helps in determining

accurate power measurements. Dynamic power dissipation is

related to the charging and discharging of various node

capacitances along different switching elements. To ensure a

fair comparison, similar test benches have been used for all the

implemented designs i.e. the input statistics remain same in

each case. The initial design entry is done using VHDL

through direct instantiation of the primitives rather than

writing inferential codes and letting the synthesizer decide how

to infer the logic. This ensures a fairly controlled mapping.

The constraints relating to synthesis and implementation are

duly provided and a complete timing closure is ensured in each

case. The design synthesis and implementation is carried out in

Xilinx ISE 12.1 [45] and the simulator database is then

analyzed for speed and area metrics. Power metrics are

obtained from Xpower analyzer.

ELECTRONICS, VOL. 19, NO. 1, JUNE 2015 17

 a(1) b(1) a(0) b(0) c(0) a(1) b(1) a(0) b(0) c(0) a(0) b(0) c(0)

S(0)

S(1)

 a(3) b(3) a(2) b(2) a(3) b(3) a(2) b(2) a(2) b(2)

S(2)

S(3)

 a(5) b(5) a(4) b(4) a(5) b(5) a(4) b(4) a(4) b(4)

S(4)

S(5)

 a(7) b(7) a(6) b(6) a(7) b(7) a(6) b(6) a(6) b(6)

S(6)

S(7) C_out
Fig. 5. 8-bit adder structure based on technology optimized binary adder cell.

B. Experimental results

We have compared our implementation results against the

various fixed point adder designs in [44] and the Xilinx IP

adder v 11.0.
TABLE I

RESOURCE UTILIZATION FOR DIFFERENT ADDERS ON XC5VLX30 FOR 16 BIT

INPUT WORD-LENGTH

Adder Design No. of occupied slices

Carry chain adder (CCA) [44] 9

Carry select adder (CSA) [44] 7

Carry skip adder (CKA) [44] 7

Carry look ahead adder (CLA) [44] 16

Sign magnitude adder (SMA) [44] 15

Xilinx IP adder v.11.0 4

3-input LUT based adder (LUT_3) 7

6-input LUT based adder (LUT_6) 3

Table I gives the comparison of resource utilization for

various adder designs. The comparison is carried out for an

input word-length of 16 bits. It is observed that technology

mapping using LUTs results in a subsequent reduction of the

on-chip resources being utilized. The most area efficient

structure is obtained using 6-input LUT because of its ability

to implement sum and carry sub-networks in a single LUT.

Further analysis is carried out for different adders for varying

word-lengths. The results are plotted as a function of word-

length and appear in Fig. 6.

4

9

1
8

4
2

4

7

1
7

5
0

4

7

2
0

5
0

4

1
6

2
3

4
1

7

1
5

3
3

7
0

2 4

8

1
6

2

7

1
4

2
8

2 3 5

1
2

8 1 6 3 2 6 4

N
O

. O
F

 O
C

C
U

P
IE

D
 S

L
IC

E
S

WORD LENGTH

RESOURCE UTILIZATION

CCA CSA CKA CLA SMA IP v 11.0 LUT_3 LUT_6
Fig. 6. Resource utilization for different adder structures.

Technology mapping using LUTs also reduces the depth of the

implemented circuit resulting in shorter critical paths. Table II

provides a comparison of the critical path delay for various

adders for an input word-length of 16 bits.
TABLE II

CRITICAL PATH DELAY FOR DIFFERENT ADDERS ON XC5VLX30 FOR 16 BIT

INPUT WORD-LENGTH

Adder Design Critical path delay (ns)

Carry chain adder (CCA) [44] 7.872

Carry select adder (CSA) [44] 7.64

Carry skip adder (CKA) [44] 7.872

Carry look ahead adder (CLA) [44] 9.165

Sign magnitude adder (SMA) [44] 12.16

3-input LUT based adder (LUT_3) 7.148

6-input LUT based adder (LUT_6) 6.969

5
.5

2
1

7
.8

7
2 1

2
.1

1
1

2
0

.5
9

5
.5

2
1

7
.6

4

1
1

.8
7

9

2
0

.3
5

8

5
.7

5
2

7
.8

7
2 1

2
.1

1
1

2
0

.5
9

4
.8

3
3 9

.1
6

5

9
.5

7
4

1
1

.4
6

8

8
.8

5
2 1
2

.1
6

2
0

.1
4

6

2
8

.6
4

4
.6

5
2

7
.1

4
8

9
.2

3
4

1
0

.4
3

7

4
.5

5
2

6
.9

6
9

9
.1

1
8

1
0

.1
2

1

8 1 6 3 2 6 4M
A

X
. C

O
M

B
IN

A
T

IO
N

A
L

 D
E

L
A

Y
 (
N

S
)

WORD LENGTH

CRITICAL PATH

CCA CSA CKA CLA SMA LUT_3 LUT_6
Fig. 7. Critical path delay variation for different adders.

Fig. 7 gives the variation in critical path delay for different

adders as word-length is varied from 8 to 64 bits. We have

also compared the maximum clock frequency for the 6-LUT

18 ELECTRONICS, VOL. 19, NO. 1, JUNE 2015

based adder and the Xilinx IP adder v 11.0. The results are

shown for different word lengths in Table III.

TABLE III

MAX CLOCK FREQUENCY FOR IP BASED AND TECH. MAPPED DESIGNS

Word length
Max. Clock frequency (MHz)

Xilinx IP v 11.0 LUT_6

8 355.493 498.008

16 266.028 378.5011

32 211.372 287.7934

64 145.65 210.32

Finally dynamic power dissipation for different structures is

considered. The dynamic power dissipation is a function of the

input voltage (V
2
), the clock frequency (fclk), the switching

activity (α), the total capacitance seen by a particular node

(CL) and the number of elements used (σ). The capacitance CL,

which needs to be driven at each toggling node, varies with the

type, fan-out, and capacitance of the logic and routing

resources used in the design. The use of LUTs ensures that the

high activity switching nodes remain hidden. This reduces the

charging and discharging of the capacitances associated with

these nodes, resulting in reduced dynamic power dissipation.

In addition, there is also a reduction in the number of elements

(σ) being utilized which reduces the power dissipated in the

logic. The analysis is done for a constant supply voltage and at

maximum operating frequency for each structure. To ensure a

reasonable comparison the test vectors provided during post

route simulations are selected to represent the worst case

scenario for data coming into the adders. Same test bench is

used for all the synthesized structures. The design node

activity captured in the VCD file along with the power

constraint file (PCF) is used for power analysis in the Xpower

analyzer tool. Table IV shows the comparison of dynamic

power dissipation for various adders for an operand length of

16 bits.

Further analysis is carried out by plotting the total dynamic

power dissipation as a function of input word-length for

different adders. The result is shown in Fig. 8.

TABLE IV

DYNAMIC POWER DISSIPATION FOR DIFFERENT ADDERS ON XC5VLX30 FOR

16 BIT INPUT WORD-LENGTH

Adder Design
Dynamic power

dissipation (Watt)

Carry chain adder (CCA) [44] 0.03608

Carry select adder (CSA) [44] 0.03604

Carry skip adder (CKA) [44] 0.03604

Carry look ahead adder (CLA) [44] 0.03625

Sign magnitude adder (SMA) [44] 0.03631

Xilinx IP adder v.11.0 0.026

3-input LUT based adder (LUT_3) 0.0193

6-input LUT based adder (LUT_6) 0.01136

0
.0

1
9

0
7

0
.0

3
6

0
8

0
.0

7
0

1

0
.1

3
9

1

0
.0

1
9

0
7

0
.0

3
6

0
4

0
.0

7
0

2

0
.1

3
9

3
2

0
.0

1
9

0
7

0
.0

3
6

0
4

0
.0

7
0

1

0
.1

3
9

3

0
.0

1
9

0
4

0
.0

3
6

2
5

0
.0

6
8

2

0
.1

3
5

3

0
.0

1
2

8
4 0
.0

3
6

3
1

0
.0

7
0

7

0
.1

4
0

3

0
.0

1
3

2

0
.0

2
6

0
.0

3
1

2

0
.0

8
4

1

0
.0

1 0
.0

1
9

3

0
.0

3
6

3

0
.0

8
5

6

0
.0

0
8

6

0
.0

1
1

3
6

0
.0

2
6

1
1

0
.0

7
6

6

8 1 6 3 2 6 4

D
Y

N
A

M
IC

 P
O

W
E

R
 D

IS
S

IP
A

T
E

D
 (
M

W
)

WORD LENGTH

DYNAMIC POWER

CCA CSA CKA CLA SMA IP v 11.0 LUT_3 LUT_6

Fig. 8. Variation in Dynamic power dissipation with word-length.

VI. CONCLUSION

This paper implemented RCA based fixed-point adders by

considering their mapping on LUT based FPGAs. The paper in

particular targeted the 6-input LUT that is an inherent basic

logic element in most of the modern day FPGAs. The

optimization techniques used in this paper are purely

technology dependent. Further hardware implementations

presented in this paper were based on the primitive

instantiations rather than the conventional inferential

approaches. This ensured a controlled mapping of the

optimized Boolean networks. The analysis and the

experimental results presented in this paper clearly indicate

that a considerable improvement in performance is achievable

by technology dependent optimizations. No such analysis has

been reported so far. By using a coding strategy based on

instantiations the on-chip FPGA components can be used in a

manner that fully utilizes their potential. This paper

deliberately ruled out any technology independent

(architectural) modification that may be carried out at the top

level of the design. The idea was to present a clear cut analysis

that will provide an insight about the performance speed-up

that may be achieved by utilizing the huge primitive support

provided by FPGA families through technology dependent

optimizations. The future discourse will focus on achieving

performance speed up in larger circuits like multipliers,

multiply-accumulators etc. Also a combination of technology

independent and technology dependent optimizations can lead

to enormous improvement in performance and will encourage

hardware intensive processing using FPGAs as a platform.

REFERENCES

[1] R. Naseer, M. Balakrishnan, and A. Kumar, “Direct Mapping of RTL

Structures onto LUT-Based FPGAs,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, Vol. 17, No. 7, July

1998.

[2] R. Tessier and W. Burleson, “Reconfigurable Computing for DSP: A

Survey,” Journal of VLSI Signal Processing, Vol. 28, pp. 7-27, 2001,

Kluwer Academic Publisher.

[3] T. J. Todman, G. A. Constantinides, S. J. E. Wilton, O. Mencer, W. Luk

and P. Y. K. Cheung, “Reconfigurable Computing: Architecture and

Design Methods,” IEEE Proceedings. Computer Digital Technology,

Vol. 152, No. 2, March 2005.

[4] K. Compton and S. Hauck, “Reconfigurable Computing: A Survey of

Systems and Software,” ACM Computing Surveys, Vol. 34, No. 2, pp.

171-210, June 2002.

ELECTRONICS, VOL. 19, NO. 1, JUNE 2015 19

[5] Scott Hauck and Andre Dehon, “Reconfigurable Computing: The

Theory and Practice of FPGA based Computation,” Morgan Kaufmann

Publisher, November 2007.

[6] Stephen D. Brown, Jonathan Rose, Robert J. Francis and Zvonko G.

Vranesic, “Field Programmable Gate Arrays,” Kluwer Academic

Publisher, 1992.

[7] A. Ling, D. P. Singh and S. D. Brown, “FPGA Technology Mapping: A

Study of Optimality,” IEEE Proceedings Design Automation

Conference, pp. 427-432, June 2005.

[8] D. Chen and J. Cong, “DAO map: A Depth-optimal Area Optimization

Mapping Algorithm for FPGA Designs,” IEEE/ACM International

Conference on Computer Aided Design, November 2004.

[9] R. Rohleder, “Marker Overview: User_Programmable Logic”, In-Stat

Services Research Report, March 1991.

[10] J. H. Anderson, Q. Wang, “Area-Efficient FPGA Logic Elements:

Architecture and Synthesis,” 16th Asia and South Pacific Design

Automation Conference (ASP-DAC), January 2011.

[11] G. C. Cardarilli, S. Pontarelli, M. Re and A. Salsano, “On the use of

Signed Digit Arithmetic for the new 6-Inputs LUT based FPGAs,” 15th

IEEE International Conference on Electronics, Circuits and Systems,

ICECS, September 2008.

[12] G. Zhou, L. Li and H. Michalik, “Area Optimization of Bit Parallel

Finite Field Multipliers with Fast Carry Logic on FPGAs,” International

Conference on Field Programmable Logic and Applications, FPL,

September 2008.

[13] S. Gao, D. A. Khalili and N. Chabbini, “Optimized Realization of

Large-Size Two’s Complement Multipliers on FPGAs,” IEEE Northeast

Workshop on Circuits and Systems, NEWCAS, August 2007.

[14] Altera Corporation, “Stratix III Device Handbook,” V.1, November

2006.

[15] Xlinx DSP Design Considerations, Xtreme DSP for Virtex-4 FPGAs,

UG073, (v 2.2), July 2006.

[16] Virtex-5 Family Overview LX, LXT, and SXT Platforms, Xilinx, Inc.,

San Jose, CA, 2010.

[17] Virtex-6 FPGA Data Sheet, Xilinx, Inc., San Jose, CA, 2010.

[18] Stratix-IV FPGA Family Data Sheet, Altera, Corp., San Jose, CA, 2010.

[19] R. Francis, J. Rose and Z. Vranesic, “Chortle-crf: Fast Technology

Mapping for Lookup Table-Based FPGAs,” Proceedings of the 28th

ACM/IEEE Design Automation Conference, 1991.

[20] R. Murgai, N. Shenoy, R. K. Brayton and A. S. Vinccentelli, “Improved

Logic Synthesis Algorithms for Table Look Up Architectures,” IEEE

International Conference on Computer-Aided Design, ICCAD-91. Nov.,

1991.

[21] K. Karplus, “Xmap: A Technology Mapper for Table-lookup Field-

Programmable Gate Arrays,” DAC, 1991.

[22] N. S. Woo, “A Heuristic Method for FPGA Technology Mapping Based

on the Edge Visibility,” DAC, 1991.

[23] P. Sawkar and D. Thomas, “Technology Mapping for Table-Look-Up

Based Field Programmable Gate Arrays,” ACM/SIGDA Workshop on

Field Programmable Gate Arrays, Feb. 1992.

[24] J. Cong, C. Wu, and E. Ding, “Cut Ranking and Pruning: Enabling A

General and Efficient FPGA Mapping Solution,” FPGA, Feb. 1999.

[25] R. Francis, J. Rose, and Z. Vranesic, “Technology mapping for lookup

table-based FPGA’s for performance,” IEEE International Conference

on Computer-Aided Design, ICCAD-91. Nov., 1991.

[26] R. Murgai, N. Shenoy, R. K. Brayton and A. S. Vinccentelli,

“Performance Directed Synthesis for Table Look Up Programmable

Gate Arrays,” IEEE International Conference on Computer-Aided

Design, ICCAD-91. 11-14Nov., 1991.

[27] K. C. Chen, et al., “DAG-Map: Graph-based FPGA Technology

Mapping for Delay Optimization,” IEEE Design and Test of Computers,

vol. 9, no. 3, pp. 7-20, Sep., 1992.

[28] J. Cong and Y. Ding, “An Optimal Technology Mapping Algorithm for

Delay Optimization in Lookup-Table Based FPGA Designs,” ICCAD,

Nov. 1992.

[29] H. Yang and D. F. Wong, “Edge-map: Optimal Performance Driven

Technology Mapping for Iterative LUT based FPGA Designs,” ICCAD,

Nov. 1994.

[30] P. Pan and C.L. Liu, “Optimal Clock Period FPGA Technology

Mapping for Sequential Circuits,” DAC, June 1996.

[31] A.H. Farrahi and M. Sarrafzadeh, “FPGA Technology Mapping for

Power Minimization,” Proc. of Intl. Workshop in Field Programmable

Logic and Applications, 1994.

[32] J. H. Anderson and F. N. Najm, “Power-Aware Technology Mapping for

LUT-Based FPGAs,” Proceedings of IEEE International Conference on

Field-Programmable Technology (FPT), December 2002.

[33] Z. H. Wang et al., “Power Minimization in LUT-Based FPGA

Technology Mapping,” ASPDAC, 2001.

[34] H. Li, W. Mak, and S. Katkoori, “Efficient LUT-Based FPGA

Technology Mapping for Power Minimization,” ASPDAC, 2003.

[35] J. Lamoureux and S.J.E. Wilton, “On the Interaction between Power-

Aware CAD Algorithms for FPGAs,” IEEE/ACM International

Conference on Computer Aided Design, 2003.

[36] D. Chen, et al., “Low-Power Technology Mapping for FPGA

Architectures with Dual Supply Voltages,” FPGA, Feb. 2004.

[37] J. Cong and Y. Ding, “On Area/Depth Trade-off in LUT-Based FPGA

Technology Mapping,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, Vol. 2, Issue. 2, pp. 137-148, June 1994.

[38] J. Cong and Y. Hwang, “Simultaneous Depth and Area Minimization in

LUT-Based FPGA Mapping,” Proceedings of the Third International

ACM Symposium on Field-Programmable Gate Arrays, FPGA ‘95, Feb.

1995.

[39] Legl, B. Wurth, and K. Eckl, “A Boolean Approach to Performance-

Directed Technology Mapping for LUT-Based FPGA Designs,” DAC,

June 1996.

[40] J. Cong and Y. Ding, “Beyond the Combinatorial Limit in Depth

Minimization for LUT-Based FPGA Designs,” ICCAD, Nov. 1993.

[41] S. C Chang, M. Marek-Sodowska, and T. Hwang, “Technology

Mapping for TLU FPGA Based on Decomposition of Binary Decision

Diagrams,” IEEE Transactions on CAD, Vol. 15, No. 10, pp. 1226-

1236, Oct. 1996.

[42] A. Farrahi and M. Sarrafzadeh, “Complexity of the Lookup-Table

Minimization Problem for FPGA Technology Mapping,” IEEE TCAD,

Vol. 13, No. 11, pp. 1319-1332, Nov. 1994.

[43] I. Levin, R.Y. Pinter, Realizing expression graphs using table-lookup

FPGAs, in: Proceedings of the European Design Automation

Conference, Hamburg, Germany, 1993, pp. 306–311.

[44] S. Bhattacharjee, S. Sil, B. Basak and A. Chakarbarti, “Evaluation of

Power Efficient Adder and Multiplier Circuits for FPGA Based DSP

Applications,” International Conference on Communication and

Industrial Application (ICCIA), December 2011.

[45] http://www.xilinx.com

20 ELECTRONICS, VOL. 19, NO. 1, JUNE 2015

