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Abstract—Although Tessendorf’s IFFT Gerstner wave model has 
been widely used, the value of A, a constant of the Fourier 
coefficient, is not given. A will strongly influence the shape of the 
rendered ocean wave and even cause amplitude malformation. 
We study the algorithm of the IFFT Gerstner wave, and give the 
method of A calculating. The method of the paper can guarantee 
there is no amplitude malformation in rendered ocean waves. The 
expression of the IFFT Gerstner wave with the amplitude of the 
cosine wave is derived again. The definite integral of the wave 
number spectrum is discretized. Further, another expression of 
the IFFT Gerstner wave is gotten. The Fourier coefficient of the 
expression contains the wave number spectrum and the area of 
the discrete integral domain. The method makes the shape of the 
generated wave stable. Comparing Tessdendorf’s method with the 
method of the paper, we find that the expression of A should 
contain the area of the discrete integral domain and the spectral 
constant of the wave number spectrum. If A contains only the 
spectral constant, the amplitude malformation may occur. By 
reading some well known open source codes, we find that the code 
authors adopted some factitious methods to suppress the 
malformed amplitude Obviously, the code authors have already 
noticed the phenomenon of the malformation, but not probed the 
cause. The rendering results of the codes are close to that of the 
method of the paper. Furthermore, the wave potential is 
computed using the Gerstner wave model directly, the author find 
it is quite close to that of the paper. The experimental results and 
comparisons show that the method of the paper correctly 
computes the wave potential and effectively solves the problem of 
amplitude malformation.  
 

Index Terms—Gerstner wave, IFFT, ocean wave spectrum, 
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I. INTRODUCTION 
HE reproduction of the ocean wave is an important and 
challenging research topic in computer graphics. Many 

fields of activity rely on it: virtual reality, movies, games, 
maritime simulators and so on.  

Bruce [1] and Nelson [2] linearly summed cosine waves to 
reproduct the height field of the sea surface. The rendered 
ocean wave is linear and regular. However, the real ocean wave 
is nonlinear and irregular [3]. To get more realistic results, 
researchers began to employ nonlinear methods. The Gerstner 
wave is an exact nonlinear solution for waves of finite 
amplitude on deep water [4], and is widely applied in ocean 
wave simulation. Fourier et al [5] introduced the Gerstner wave 
to ocean wave rendering, and added the random phase shift in 
the model. So the rendered wave is irregular as well as 
nonlinear. Thon et al [6] and Fréchot [7] applied the directional 
spectrum in the Gerstner wave model. The directional spectrum 
is gotten through observation, so the works of [6, 7] combined 
the observational oceanographic data with the Gerstner wave 
model. Consequently, the approaches of [6, 7] are also named 
as “hybrid approaches” [8].  The geometry of the sea surface 
can be optimized by some approaches, such as the adaptive 
surface mesh [9], the quad tree [10], the real-time adapting 
mesh [11], and the fractal reconciliation [12]. The Perlin noise 
[6, 13] was added to the height field as random disturbance. 
Additionally, Prachumrak et al [14] realized the interaction 
between the floating object and the sea surface. 

The direct usage of the Gerstner wave, as mentioned above, 
is very convenient. However, if a lot of cosine waves are 
involved, the summation becomes expensive. A cheaper 
alternative exists by way of IFFT [15], i.e. the IFFT Gerstner 
wave. IFFT has a large degree of parallelism in each stage of 
the computation [16] and its implementation is efficiently 
speeded up by GPU [17]. Tessendorf [18] is the pioneer of 
applying the IFFT Gerstner wave model in graphics. The 
Fourier coefficient of Tessendorf’s method contains the wave 
number spectrum and random numbers, so the generated wave 
is irregular and nonlinear. The optimizing approach for the 
geometry included the concentric circle grid [19] and clipmap 
[20]. By the optimization, the mesh of the geometry is refined 
or coarsened according to the eye position. Mitchell [21] and 
Miandji et al [22] utilized image processing algorithms to 
increase the resolution of the sampled height map. 
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Swierkowski et al [23] generated the ship wave on the IFFT sea 
surface. Weerasinghe et al [24] combined the IFFT Gerstner 
wave with 6-DOF (degree of freedom) ship motion model. The 
Perlin noise [25], and the high frequency data [26] can also add 
to the IFFT sea surface. What is more, the model of the IFFT 
Gerstner wave was also used to create the special effects, such 
as splashing [27, 28], the whitecap [29] and the foam [30]. 

To facilitate reading, some parameters and symbols are 
defined here. We use Ψ  to denote the wave number spectrum, 
and AΨ  the spectral constant of the corresponding wave 

number spectrum. ,PhAΨ  is the spectral constant of the Phillips 

spectrum, ,PMAΨ  is that of PMΨ  in expression (32), and  

,JAΨ  is that of JΨ  in expression (33). A  represents the 

numeric constant of the Phillips spectrum in expression (4).  
The IFFT Gerstner wave was raised in [18], and [19-30] 

directly made use of it. All of them achieved satisfactory 
results. A  is a numeric constant of the Phillips spectrum which 
is included in the expression of the Fourier coefficient, so A  is 
also contained in the expression of the Fourier coefficient. 
Although Tessendorf’s method has been widely used and 
studied, the author finds the value of A  is not given in [18-30]. 
However, A  strongly influences the shape of the generated 
ocean wave. If  the expression of A  contains only ,PhAΨ ， the 

amplitude malformation may occur. The larger the area of the 
sea surface, the more serious the amplitude malformation. So 
the author thinks that the method of A  calculating should be 
considered and provided. 

The paper studies the model of the IFFT Gerstner wave, and 
gives the method of A  calculating. The expression of the IFFT 
Gerstner wave with the amplitude of the cosine wave is derived 
again. To begin with, we discretize the definite integral of the 
wave number spectrum with the right Riemann sum. The area 
of the discrete integral domain depends on the sample mode for 
the wave number vector. Further, we can get an expression of 
the IFFT Gerstner wave. The Fourier coefficient of the 
expression contains the wave number spectrum and the area of 
the discrete integral domain of the sampled wave number 
vector. Comparison shows that the expression of A  should 
include the spectral constant of the wave number spectrum as 
well as the discrete integral domain. Till now, a confusing 
problem is brought. Since A  is not given, how did [18-30] get 
good rendering results? The author infers that some factitious 
methods may be taken to treat the amplitude malformation. The 
first method is setting A  very small. Although [18-30] shared 
the same method and wave number spectrum, i.e. the Phillips 
spectrum, A , the numeric constant of the spectrum, is not 
given. So the user of the method in [18] can set A  very small 
to treat the amplitude malformation. The second method is to 
multiply the height field by a small factor. After reading three 
widely used open source codes, osgOcean [31], oceanFFT [32] 
and fftrefraction [33], the author finds that the code authors 
adopt the factitious methods. This confirms the author’s 
inference. The factitious method is effective but lack of basis. 
When compute the wave potential of the method of directly 

using the Gerstner wave model, we find the computed wave 
potential is close to that of the method of the paper. The 
comparisons and experiments results prove that the method of 
the paper correctly computes the wave potential, and 
effectively solves the problem of amplitude malformation. 

II. PROBLEM STATEMENT 
The model of the IFFT Gerstner wave [18] is expressed as: 

%
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where h  is the elevation of the sea surface, 

           pqx
r

 is the horizontal position, ( , )pq p qx x y= =
r

 

( / , / )Lp n Lq n , 
           t  is the time, 

          %h  is the Fourier coefficient, 

          ijk
r

 is the wave number vector, ijk =
r

, ,( , )x i y jk k =  

(2π / , 2π / )i L j L , and || ||ijk k=
r

, 
          L  is the width of the rendered ocean wave surface, 
          p , q , i  and j  are integers, and / 2 , ,n p q− ≤  

, / 2i j n< ,  

         n  is a positive integer, 2mn = , and m  is a positive 
integer, 

         1−  is the imaginary unit, i.e. 2( 1)−  1= − , 
         D  is the choppy wave vector. 
So the 3D coordinate of a point on the sea surface is 
( ( , ), ( , ))pq pq pqx x t h x tλ+ D
r r r

. %h  is expressed as: 
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where * is the notation for the complex conjugate, kω  is the 

circular frequency, and %0h  is expressed as: 

%0 1 2
1( ) ( 1 ) ( ).
2

ij ijPhh k kε ε= + − Ψ
r r

 (3) 

where 1ε  and 2ε  are independent Gaussian random numbers. 

E  and Var  denote the expectation and variance respectively. 

1 2E( )=E( )=0ε ε , and 1 2Var( )=Var( )=1ε ε . And PhΨ  is 
the Phillips spectrum, expressed as: 

2
2

4 4 2

1 g( ) exp cos ( ).Ph k A
k U k

θ α⎛ ⎞
Ψ = − −⎜ ⎟

⎝ ⎠

r
 (4) 

where A  is a numeric constant, U  is the wind velocity, and 
α  is the angle between the wind direction and x  axis. 

( )Ph kΨ
r

 is in the spectral form raised in [34], i.e. 
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4( ) ( )Ph k k f θ−Ψ
r
 . But neither [34] nor [18-30] worked out 

the value of A . The author analyzed the structure of ( )Ph kΨ
r

, 
and found its frequency spectrum is similar to the P-M 
spectrum in form. If the Phillips and P-M spectra share the 
same wave potential, 3

, 3.48 10PhA −
Ψ = × , and U  should be 

the wind velocity at the height of 19.5 m above the sea surface, 
i.e. 19.5U  [35]. Yet when the author applies ,PhA AΨ=  in 

rendering, the shape of the generated ocean wave is not stable. 
Figure 1 demonstrates the rendering results. The amplitudes of 
the waves in both Figure 1(a) and (b) are overlarge, and the 
bigger the width L  is, the more serious the malformation is. So 
the author thinks that the method in [18] need re-examined, and 
the method of A  calculating should be provided. 

 
 (a) 256 mL =  

 
 (b) 512 mL =  

Fig. 1.  The generated ocean waves of ( )Ph kΨ
r

(
19.5

10.0 m/sU = ). 

III. THE IFFT GERSTNER WAVE 
[18] provided the expression of the IFFT Gerstner wave, and 

[19-30] directly made use of it. However, neither [18] nor 
[19-30] gave the derivation of the expression. Although [15] 

derived the expression of the IFFT Gerstner wave, the work 
was not complete and had some flaws: 

 The IFFT solution of the height field was worked out but 
lack of some intermediate steps.  

 The IFFT solution of the choppy wave was not produced.  
 The expression of calculating the amplitude of the cosine 

wave is not provided.  

To solve the flaws, the author need derive the expression of the 
IFFT Gerstner wave again, and then compare the re-derived 
expression with the expression of [18].  

A. The IFFT Gerstner Wave with the Amplitude of the Cosine 
Wave 
We now build the solution of the height field from a 

collection of real cosine waves: 

,
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 (5) 

where ijϕ  is the phase shift, and ijϕ  is an independent 

uniform random number from [0,2π] . Next we write the 
cosine in terms of complex exponentials: 
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We write the cosine in terms of another complex exponentials: 
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where ,i j ijk k− − = −
r r

. By comparing expression (6) with (7), 
we can get the IFFT formula of the height field as: 

%
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where %( , )ijh k t

r
 is the Fourier coefficient. It is expressed as: 
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%0 ( )ijh k
r

 is express as: 
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%0
1( ) (cos 1sin ) .
2

ij ij ij ijh k Aϕ ϕ= + −
r

 (10) 

We note %0 ( )ijh k
r

 includes ijA . Therefore, %( , )ijh k t
r

 contains 

ijA . The above derived IFFT formula of the height field agrees 

well with that of [15]. 
The choppy wave is computed as: 
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The IFFT formula of the choppy wave is: 
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 is the Fourier coefficient of the choppy wave: 
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 is defined as; 
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So % ( , )c ijh k t
r

 also contains ijA . 

B. Approximate Solution of the Amplitude of the Cosine 
Wave  
The relation between the wave number spectrum and the 

amplitude of the cosine wave is as [36]: 
2

,

( ) ( ).
2
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ij
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A
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where δ  denotes the Dirac function. ( )kΨ
r

 is nonnegative, 
continuous, bounded, and derivable. One should note that 

( )kΨ
r

 represents the wave number spectrum, not only the 
Phillips spectrum.  

The relation among Var( )h , ijA  and ( )kΨ
r

 is specialized 

as [36]: 
2
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. Although expression (15) 

explains the relation between ( )kΨ
r

 and ijA , it is very 

difficult to be implemented by the computer. To facilitate the 
computer programming, we need another expression. 
Accordingly, we discretize ( )

k
k kΨ∫∫ dr

r r
 to get the approximate 

solution of ijA . The boundary value of the discrete integral 

domain is determined by the sample mode for the wave number 

vector in IFFT. The generally used method of the discretization 
of the definite integral includes the Riemann sums, Trapezoid 
rule and Simpson rule [37]. We employ the right Riemann sum 
as: 
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approximate solution of ijA  as: 
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If , 0x yk kΔ Δ → , expression (18) turns to expression (15). 
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 (a) 256 mL =  

 
 (b) 512 mL =  

Fig. 2.  The generated ocean waves of the method of the paper 

( 19.5 10.0 m/sU = ). 



ELECTRONICS, VOL. 18, NO. 2, DECEMBER 2014 
 

93

We respectively substitute the above calculated %0 ( )ijh k
r

 and 
%0 ( )ijh k

r
 in expression (9) and (13), and solve for %( , )ijh k t

r
 

and % ( , )c ijh k t
r

, the Fourier coefficient. Both of the coefficients 

contain skΔ r  and ( )ijkΨ
r

. 

We employ the Fourier coefficient containing skΔ r  and 

( )ijkΨ
r

 to render the ocean wave, as shown in Figure 2, and 
get satisfactory results. As L  rises, the wave shape still keeps 
stable.  

IV. COMPARISON STUDIES 

A. Comparing the Method in [18] with the Method of the 
Paper 

P  is the ocean wave potential per unit area, ρ  is the water 
density, g  is the gravity acceleration, and gVar( )P hρ= . 
Both ρ  and g  are constants, so Var( )h  represents the 

potential. Var( )= ( )
k

h k kΨ∫∫ dr

r r
, and ( )kΨ

r
 is an energy 

spectrum. 
To facilitate comparison, we respectively denote h , %h , %0h  

and ijA  in [18] by Th , %Th , %0,Th  and ,ij TA . In other words, 

Th , %Th  and %0,Th  are calculated by expression (1), (2) and (3) 
respectively. For the Phillips spectrum, if  the expression of A  
includes only ,PhAΨ , the wave potential of the method of [18] 
is: 
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The wave potential of the method of the paper is: 
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contains. Consequently we get below expression: 
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where 22 / ( / 2π)
k

s L=Δ r . When the wind velocity is fixed, 

( )
k

k kΨ∫∫ dr

r r
 is a constant. In above expression, we find the 

Var[ ( , )]h x t
r

 is accurate, while Var[ ( , )]Th x t
r

 is overlarge. What 

is worse, the huger L  is, the larger Var[ ( , )]Th x t
r

 is, and the 

wave potential of ( , )Th x t
r

 does not satisfy expression (16). So 

Var[ ( , )]Th x t
r

 is miscomputed in this case. This is the reason 
why the amplitude of the generated ocean wave is malformed in 

Figure 1. This also explains why the malformation is turning 
more serious as L  increases.  

If the expression of A  contains only ,PhAΨ , we find that the 

amplitude of the cosine wave, ,ij TA , is also miscalculated. 

Although [18] did not give the expression of ,ij TA , we can get 

it by comparison. Expression (3) is written as: 
%0 1 2( ) ( ' 1 ') ( ).ij ijh k kε ε= + − Ψ

r r
 

 
(23) 

where 1 1'= / 2ε ε , 2 2'= / 2ε ε , 1 2E( ') E( ')ε ε=  0= and 

1 2Var( ') Var( ') 1/ 2ε ε= = . Consequently, 1 'ε  and 2 'ε  
respectively play the same role as cos ijϕ  and sin ijϕ . 
Comparing expression (23) with (10), we get ,ij TA  as: 

, 2 ( ).ijij TA k= Ψ
r

 (24) 

 
The expression of ,ij TA  does not contain 

k
sΔ r  either, and it is 

miscomputed. Hence, if L  is great (i.e. 
ksΔ r  is small), 

,ij T ijA A>> , and the rendered ocean wave is malformed.  
The comparisons of the wave potential and the amplitude of 

the cosine wave indicate that the expression of A  should 
contain not only ,PhAΨ . 

If Var[ ( , )] Var[ ( , )]Th x t h x t=
r r

 and , ,ij T ijA A= A  is 
expressed as: 

,
1 .
2 PhkA s AΨ= rΔ  (25) 

 
Expression (25) shows that the value of A  depends on ,PhAΨ  
as well as 

k
sΔ r . In this case, both the wave potential and the 

amplitude of the cosine wave are computed correctly, and the 
shape of the generated wave is stable. 

B. Comparing the Wave Potential of Open Source Codes 
with That of the Method of the Paper  
Some well known open source codes, such as osgOcean, 

oceanFFT and fftrefracion, use the geometric surface to render 
the sea surface, i.e. the sea surface has a uniform scale of the 
geometric surface. So we first calculate the parameters of the 
geometric surface, such as the amplitude of the cosine wave 
and the variance of the height field, according the data of the 
open source code. Further we get the above-mentioned 
parameters of the sea surface. The aim of the comparison is to 
look at the difference between the potential calculated by the 
method of the paper and the potential of the sea surface 
calculated according to the open source data. 

In osgOcean, the height field of the geometric surface equals 
to the IFFT height field. But in oceanFFT and fftrefraction, the 
height field of the geometric surface equals to the IFFT height 
field multiplied by a small factor denoted zp . The subscripts 
GS  and OS  identify the geometric and sea surface of the open 
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source code respectively. Consequently, GSL , GSA , ,GSh  and 

,ij GSA  are the length, numeric constant of the Phillips spectrum, 
height field and cosine wave amplitude of the geometric 
surface. GSL  and GSA  are given in the code. According to 
uniform scaling we can get: 

,

,

( , ) .
( , )

ij OSOS OS
xyz

GS z ij GSz GS

AL h x tp
L p Ap h x t

= = =
r

r  (26) 

 

where xyzp  is the uniform scale factor and OSL L= . So 
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Var[ ( , )] / Var[ ( , )]OSh x t h x t

r r
, ,/ij ij OSA A  and some concerned 

parameters of the codes are listed in Table 1. 
 

TABLE 1 

 Var[ ( , )] / Var[ ( , )]
OS

h x t h x t
r r

, 
,

/
ij ij OS

A A  AND CONCERNED PARAMETERS 

 

In Table 1, ijA  and Var[ ( , )]h x t
r

 are close to ,ij OSA  and 

Var[ ( , )]OSh x t
r

 respectively. So in the code of osgOcean, 

oceanFFT and fftrefraction, GSA  and zp  are adjusted to treat 

the amplitude malformation. The methods of adjusting GSA  

and zp  is as effective as the method of the paper, which 
confirms the work of the paper.  

Figure 3 is the large scale ocean scene rendered with the 
method of the paper. The ocean surface is constructed by 17×
17 patches. The area of the patch is 256m×256m, with 128×
128 IFFT grids. The program is implemented on a PC with 
Geforce GTX 460 GPU and Intel Core(TM) 2 Duo CPU, and 
the frame rate is 70 f/s. If the number of the IFFT grid of each 
path increases to 256×256, the frame rate is 49 f/s. 

 
Fig. 3.  The large scale ocean scene. 

C. Comparing the Method of the Paper with the Method of 
Directly Using the Gerstner Wave  
We compare the method of the paper with the method of 

directly using the Gerstner wave model in [6, 7, 9-14], and try 
other types of wave number spectra in this section. 

In [6, 7, 9-14], the directional spectrum is applied to 
calculate the amplitude of the cosine wave. The relation 
between the directional spectrum and the wave number 
spectrum is as [36]: 

  
Var( ) ( ) ( , )d d ,

d ( )( ) [ ( ), ] .
d

k
h k k E

kk E k
k k

ω θ
ω θ ω θ

ωω θ

= Ψ =

Ψ =

∫∫ ∫ ∫r

r r

r

d
 (28) 

where ( , )E ω θ  is the directional spectrum, 
( , ) ( ) ( )E S Dω θ ω θ= , ( )S ω  is the frequency spectrum and 
( )D θ  is the directional distribution. The mostly applied 
( )S ω  in [6, 7, 9-14] includes the P-M and JONSWAP spectra. 

These two frequency spectra are recommended by ITTC 
(International Tank Towing Conference) [38]. The widely used 

( )D θ  is expressed as: 

21 ( 1)( ) cos .
( 1/ 2) 22 π

nnD
n

θ αθ Γ + −⎛ ⎞= ⎜ ⎟Γ + ⎝ ⎠
 (29) 

where Γ  is the gamma function, and n  is a positive integer.  
In [6, 7, 9-14], ijA  is expressed as: 

,2 ( , ) .ij i jA E sω θω θ= Δ  (30) 

where ,sω θ ω θ= Δ ΔΔ . If expression (19) is used to calculate 

%0h , we can get below expression: 

   
,

, ,

Var( ) ( ) ( , ) .ij i jk
i j i j

h k s E s
ω θ

ω θ= Ψ ≈∑ ∑r

r
Δ Δ  (31) 

Open source code 
Concerned parameter 

Var[ ( , )] / Var[ ( , )]
OS

h x t h x t
r r

 ,/ij ij OSA A  ( )
OS

L L  GSL  xyzp  
zp  GSA  

osgOcean 256 m 256.0 1.0 1.0 0.64×10-6 1.64 1.28 
oceanFFT 100 m 2.0 50.0 0.5 1.0×10-8 1.10 1.05 

fftrefraction 128 m 128.0 1.0 0.1 0.8×10-4 0.52 0.72 
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One should note that in expression (31), ( )kΨ
r

 is the 
corresponding wave number spectrum of ( , )E ω θ , not only 
represents the Phillips spectrum. So we can arrive at the 
conclusion that the wave potential of [6, 7, 9-14] is very close 
to that of the method of the paper. To further prove the 
conclusion, another two wave number spectra, ( )PM kΨ

r
 and 

( )J kΨ
r

, are constructed and tried.  

The frequency spectrum of ( )PM kΨ
r

 is the P-M spectrum, 

and the directional distribution of ( )PM kΨ
r

 is in the form of 

expression (29) with 1n = . ( )PM kΨ
r

 is expressed as: 
2

2
, 4 4 2

19.5

g1( ) exp cos .
2

PM
PM PMk A

k U k
β θ α

Ψ

⎛ ⎞ −⎛ ⎞Ψ = −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

r
 

(32) 
where , / 2πPM PMA αΨ = ，

38.1 10PMα −= × , 

0.74PMβ = [38]. ( )PM kΨ
r

 is the spectrum of the fully 

developed sea. The rendering results of ( )PM kΨ
r

 is very 
similar with that of the Phillips spectrum.  

The frequency spectrum of ( )J kΨ
r

 is the JONSWAP 

spectrum, and the directional distribution of ( )J kΨ
r

 is the 

same as that of ( )PM kΨ
r

. ( )J kΨ
r

 is expressed as: 
4
0, 2

, 4 2 2

1 5( ) exp cos .
4 g 2

JJ a
J Jk A

k k
ω θ αγΨ
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 (33) 
where  , / 2πJ JA αΨ = , and 0.220.076J Xα −=  [39], 

2
10g /X X U= , and X  is the fetch, 

10U  is the wind velocity at the height of 10 m above the 
sea surface, 

0,Jω  is the peak frequency of the JONSWAP 

spectrum, and 0.33
0, 1022(g / )J U Xω −= , 

            γ  is a constant, 1 7γ< < , with average 3.3; 
2 2 2

0, 0,exp[ ( ) / (2 )]J k J Ja ω ω σ ω= − − ,  

0,

0,

0.07, if
0.09, if

k J

k J

ω ω
σ

ω ω
≤⎧⎪= ⎨ >⎪⎩

. 

( )J kΨ
r

 is used to render the developing sea. Figure 5 is the 

rendering results of using ( )J kΨ
r

in the method of the paper. 
The shape of the rendered wave is stable.  

 
(a) 256 mL =  

 
(b) 512 mL =  

Fig. 5.  Rendering results of ( )J kΨ
r

 ( 10 11m/sU = , 50 kmX = , 

=3.3γ ). 

V. HOW DO [18-30] GET GOOD RENDERING RESULTS? 

Section IV provides the method of A  calculating. However, 
in [18-30], the value of A  is not mentioned. If the value of A  
is not proper, the amplitude of the rendered may be malformed, 
just as mentioned above. It confuses the author how [18-30] get 
satisfactory experimental results. The author infers that some 
factitious methods may be used to suppress the overlarge 
amplitude and keep wave shape stable. There are two factitious 
methods: 

 Because A  is not given, the user of the method can set 
A  very small to keep the generated wave shape stable.  

 The other method is to multiply the IFFT height field by a 
very small factor.  

We find the authors of the three open source codes have 
employed such methods. osgOcean used the first, fftrefraction 
used the second, and oceanFFT used both. The concerned 
parameters are listed in Table 1. It is obvious that the code 
authors have already noticed the phenomenon of the amplitude 
malformation, but not probed the cause. Although the method 
is effective, it is only a matter of expediency and lack of basis. 
The work of the paper gives the method of A  calculating, and 
provides theoretical basis for ocean wave rendering with the 
IFFT Gerstner wave model. 



ELECTRONICS, VOL. 18, NO. 2, DECEMBER 2014 
 
96

VI. CONCLUSIONS 
Tessendorf [18] raised the model of the IFFT Gerstner wave 

to render the ocean wave, and [19-30] used the method. [18-30] 
got good rendering results. However, the value of A , a 
numeric constant of the Fourier coefficient, is not given in 
[18-30]. The shape of the rendered ocean wave is under the 
influence of A . If the value of A  is not proper, the amplitude 
of the generated wave is malformed, and the larger the rendered 
sea surface, the more serious the malformation. So the author 
thinks that the method in [18] need be re-examined and the 
method of A  calculating should be provided. 

The expression of the IFFT Gerstner wave with the 
amplitude of the cosine wave is re-derived at first. Then the 
right Riemann sum is used to discretize the definite integral of 
the wave number spectrum, and the area of the discrete integral 
domain is determined by the sample mode for the wave number 
vector in IFFT. Further we get the expression of the IFFT 
Gerstner wave, and the Fourier coefficient of the expression 
contains the wave number spectrum and area of discrete 
integral domain. The method mentioned above treats the 
amplitude malformation and keeps the generated wave form 
stable. 

Comparison studies and experiments are done to calculate 
the value of A  and approve the value. 

By comparing the expression of the method of the paper with 
that of [18], we find that the expression of A  should contain 
not only ,PhAΨ , the spectral constant of the wave number 

spectrum of the Phillips spectrum, but also ksrΔ , the area of 
discrete integral domain of the sampled wave number vector. If 
the expression of A  contains only ,PhAΨ , the potential of the 
rendered wave is overlarge, and the amplitude malformation 
occurs. The larger the width of the rendered sea surface, the 
more serious the malformation. If the expression of A  
contains ,PhAΨ  and ksrΔ , both the wave potential and the 
amplitude of the cosine wave are correctly calculated, and the 
shape of the generated wave is stable. 

After reading some well known open source codes, including 
osgOcean, oceanFFT and fftrefraction, we find the code 
authors take factitious methods to suppress the amplitude 
malformation, and the wave potential of the suppressed wave is 
close to that of the method of the paper. It is obviously appeared 
that the code authors have already noticed the phenomenon of 
the amplitude malformation, but not discovered the cause. The 
factitious method is effective, but lack of basis. In the author’s 
opinion, the factitious method is the reason why [18-30] 
achieve good results.  

We compare the method of directly using the Gerstner wave 
with the method of the paper. In the former method, the 
directional spectrum is used to calculate the amplitude of the 
cosine wave. The wave potential of the method is quite close to 
that of the method of the paper. The P-M and JONSWAP 
spectra are employed to construct another two wave number 
spectra respectively. Both shapes of the rendered wave are 
stable.  

The comparisons and experiment results show that the 
method of the paper can precisely compute the wave potential, 
and effectively correct the amplitude malformation. 

The wave spectrum used in the above mentioned references, 
either the wave number spectrum or directional spectrum, is the 
spectrum of the wind sea. So the generated wave is the wind sea. 
The wind sea spectrum is reasonably accurate for sever states.  
However, moderated and low sea states are often of combined 
nature, consisting of both wind sea and sea swell [40]. So the 
future work may concentrate in the rendering of the mixed 
wave and the sea swell. The mixed wave includes the wind sea 
as well as the sea swell. To animate the mixed wave, we may try 
the two peak spectrum [40, 41]. The swell spectrum [42] can be 
applied in rendering the sea swell. This work will make the 
rendered ocean wave more realistic.  
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