ELECTRONICS, VOL. 18, NO. 2, DECEMBER 2014 81

New Single VDCC-based Explicit Current-
Mode SRCO Employing All Grounded Passive
Components

Dinesh Prasad, D. R. Bhaskar and Mayank Srivastava

Abstract—This paper proposes a new single resistance
controlled sinusoidal oscillator (SRCO) which employs only one
voltage differencing current conveyor (VDCC), two grounded
resistors and two grounded capacitors. The presented circuit
configuration offers the following advantageous features (i)
explicit current-mode output with independent control of
condition of oscillation (CO) and frequency of oscillation (FO) (ii)
low active and passive sensitivities and (iii) a very good frequency
stability. The proposed structure can also be configured as (a)
trans-admittance low pass filter and band pass filter and (b)
quadrature oscillator. The validity of the proposed SRCO,
quadrature oscillator and trans-admittance low pass filter and
band pass filter has been verified by PSPICE simulations using
TSMC CMOS 0.18um process model parameters.

Index Terms—VDCC, SRCO, current mode, filter.
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I. INTRODUCTION

Recently, attention is being given to single active element/
active building block (ABB) based SRCOs [1]-[12] and
in particular explicit current-mode (CM) SRCOs [13]{18]
and the references cited therein. The use of single ABB has
the advantageous features like small chip area, low power
dissipation and manufacturing cost as compared to two or
more ABBs. The CM operation has received much attention
over voltage-mode (VM) operation due to its wider bandwidth
and high linearity [19]. The usefulness of explict CM SRCO
is well defined in [20]. The VDCC provides electronically
tunable transconductance gain in addition to transferring both
current and voltage in its relevant terminals [21]. The
application of VDCC as positive/ negative lossy/ lossless
grounded inductance simulation circuits and a floating
inductance simulation circuit using single VDCC have been
described in [22]-[23]. Therefore, the purpose of this article is
to present a new explicit CM SRCO, quadrature oscillator and
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trans-admittance low pass filter and band pass filter using
single VDCC and with bare minimum passive components.
The performance of the various modes both in time-domain
and frequency-domain has been verified by PSPICE
simulation.

The paper is organized as follows: Proposed circuit is
described in section 2. Section 3 includes non ideal analysis
and sensitivity performance of the circuit. Frequency stability
of the proposed circuit is presented in section 4. Sections 5
and 6 represent the simulation results and conclusion of the

paper.

II. PROPOSED CIRCUIT CONFIGURATION

The symbolic notation of recently proposed six- terminals
active building block namely, VDCC is shown in Fig. 1,
where P and N are input terminals and Z, X, Wp and Wy are
output terminals. All terminals of VDCC exhibit high
impedance, except the X terminal [22]. The ideal terminal
characteristics of VDCC can be defined by the hybrid matrix
as given by equation (1). The proposed configuration is shown
in Fig. 2
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Fig. 1. The symbolic notation of VDCC.
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05 R. J— []\L —_— |02 In the third mode of operation, the various current transfer
1 G 103 functions obtained from Fig. 2 are
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Fig. 2. The proposed circuit topology. +
I,(s) 1
The characteristic equation of the proposed SRCO as shown ]— TR C (10)
in Fig. 2, can be derived using routine circuit analysis as: 0 () sRGC
1(1 1,(s) 1
s2+s—(——gmj+g—’"=o @ - (11
C \ R R,C,C, 1,(s) sRC
. - () 1
Thus, from equation (2), it is clear that the CO and FO are 57— (12)
obtained as: I o4 () sRC

1
—— <0 3
[Rl gmj 3

For sinusoidal steady state, Equations (9), (10), (11) and
(12) become

]01 (]CO) _ 1 ejgoo

and — = (13)
P 1, (jo) oR,C
R,C,C, 1, (jo) _ | Y (14)
1, (jo) ®R,C,
From equations (3) and (4), CO can be established by R, I (i
and FO is controlled by R,. Hence, both CO and FO are [ (J a)) _ 1 -j90° (15)
independently controllable. ]0 (jw) a)RZCl
With the feedback 1 ink broke“n.at node ‘17 and consider.i
the *P’ terminal of VDCC aslost(ﬁ@_ihpu_}gog the two o(pen I oc
gansfer functions realized by the proposed circuit are given 104 (jw) - wRC, ¢ 16)
y:
s C,g m Thus, the phase difference between (I,; and I 4) is 90° and
I 0, R, between (I, and ), (Io; and I,) and (I,s and L4) is -90°
V_ = 1 (%) Hence, the currents (I and Io4), (Io2 and Ios) (I3 and I4) and
T + Enm (Ios and I,4) are in the quadrature form. Thus, in this mode of
R,C, R,C\C, operation, the circuit works as quadrature oscillator.
2
104 — S gm (6) III. NON —IDEAL PERFORMANCE AND SENSITIVITY ANALYSIS
V., 2 1 + g Considering the various parasitics of VDCC i.e. the X-
§ TS RC R,C,C, terminal impedance consisting of a resistance’Y in series with
1~1 1

Thus, in this mode, the same configuration can also be used
to realize trans-admittance band pass and high pass filters
simultaneously. From equations (5) and (6), the natural
frequency (w0) and bandwidth (BW) are given by

inductance 0 , the impedance at the Wp-terminal consisting of
a resistance 'Y in parallel with capacitance 0 , the impedance
at the Wy-terminal consisting of a resistance Y in parallel
with capacitance 6 and the impedance at the Z-terminal
consisting of a resistance 'Y , the FO and CO for the circuit
shown in Fig. 2 are given as:
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FO:
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The sensitivities 0 f o with respect to active and passive components are given as:
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{CPCIRI(RHng)*C,,L [H—] C,L.Rg. }

se=- ;
C.C.R(R.+R)*C.C,RIR. +R)+Z}{RR 2R +R}
R R R R1 Rle R«\ngmiRZngm
. C.LR+C,LR }{RP R RR RR' R R +g~'Rl}
Se = 5% 8.
Where
R
C.C:R(R.*R)*C.C,RR.+ R.)* CL[1+ : Rng :
- (R.*R, I R. {Rsz+R1R1+R1Rz RRg_RRgHgR}
1 1 RP RP RPRZ RPR_ RP R
|c.L [H . ] WOLR ¢ 1 R,
R. R,
r=2 CCzR(R +R)*C.C,RR.+R)*C.L. [1+1l§' R ] C.L. [HR J CLR CPL,YRIg,J’
C.L.R d
Z=1C.L|"+,'-R g j C,,LJ.[1+1]+“‘—C,7L,R1gm "
R. R,
W= Rz R. R RRz RRg " R.RE, +g R,
R: R R. R R R, R,
(19)
Taking C; = C, = 0.01nF, C, = C, =0, R,= R, = R, = =, 15X 10° } } [ }
R,=0, L, = 0, R, = 3.675kQ a Rd= 10kQ, these T T ]
sensitivities are found to be (0, -1/2, 0, 0, 0, -1/2, -1/2, 0, 1/2) 1 A | | :
for equations (19). Thus, all the passive and active sensitivities ‘ i i
0.5
of natural frequency (@, ) are low. z |
€ 0 I
e |
IV. FREQUENCY STABILITY 3 0 | | 1 |
- | | |
Using the definition of the frequency stability factor "Y as i i i
- | I
giVen in [4]“Y p (Where é _ is the 1 } } LRLRR L RRARRRARRRLRARIRS AL AR RRRRRRRRRRI
| |
normalized frequency and ' O represents the phase of the 18 05 1 15 ‘2 z‘r_s 3 35 4 45 5
open-loop transfer function of the oscillator circuit), with® Time (s) x10°
6 6hQ —and'Q — £°Q, the "Yof the proposed (@
15% 10°

oscillator is found to be ¢WIE. Therefore, very good frequency
stability is obtainable by selecting larger value of n.

V. SIMULATION RESULTS o,rlz / A\ / A\ / A\ / / A\

To verify the theoretical analysis, the proposed circuit was
simulated using CMOS VDCC [22]. The passive components

Current (A)
o
-~
—
/
—
/
/
—
—
—

were selected as C; = C, = 0.01nF, R; = 3.675kQ a R, 05

10kQ. The transconductance of the VDCC is taken as \ / \ / \ / \ / \ /
277.83uA/V. PSPICE generated output waveforms indicating 1\ v \/ \/ \/
transient and steady state responses are shown in Fig. 3(a) and

3(b) respectively. These results, thus, confirm the validity of 13s 485 29 705 5
the proposed configuration. Fig. 4 shows the output spectrum, Time ($) x 10°
where the frequency of the generated wave is 2.654MHz and ()

the total harmonic distortion (THD) is found to be 1.584%. Fig. 3. (a) Transient output waveform, (b) Steady state response of the output.
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Fig. 5 shows the frequency response of Transadmittance band From Fig. 7 it is clear that the two currents are in quadrature
pass and high pass filters. and the measured value of phase shift between two waveforms
1X10° is Yd w
0sc|=|2.654MHz x 10°
THD = 1.584% 2 102(4.821e-5, 4.521e-7p4(4.86e-5, 7.826e-§)
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Fig. 4. Simulation result of the output spectrum. Time (s) x 10°
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Fig. 6 shows the transient response and steady state px10°
response (considering all five currents). \ A (4 p2sTes, & l,-\e'” A A
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Fig. 6. (a) Transient output waveform, (b) Steady state response of the output.
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Fig. 8 shows the transient response of output waveform of
Fig. 2 to achieve S* = 2. The circuit of Fig 2 has been checked
for robustness using Monte-Carlo simulations, the sample
result has been shown in Fig. 9, which confirms that for £10%
variations in the value of Ry, the value of oscillation frequency
remain close to its normal value of 2.654MHz and hence

Current (A)

almost unaffected by change in R;. The circuit is re- simulated
for larger value of n (n = 100) and the transient response is
shown in Fig. 10. Fig. 11 shows the variation of frequency of
output with respect to resistance R,. Fig. 12 represents the

5
4
3
2
1
0

-1

-2|

-3

-4

variation of S* with n. A comparison with other previously

known explicit CM SRCOs using single ABB has been given S R ey N

in Table 1. These results, thus, confirm the validity of the Fig. 8. Transient output waveform for S¥ = 2.
proposed configuration.
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Fig. 9. Result of Monte-Carlo Simulation of oscillator circuit of Fig. 2.
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VI. CONCLUSION

e A new SRCO has been proposed using a recently

introduced VDCC. The proposed circuit employs four
/ grounded passive components (two grounded resistors and two
grounded capacitors) and yet offers independent control of FO
1 through the resistor R, and CO through the resistance R, low
active and passive sensitivities, realizes two trans-admittance
filters (Band Pass and Low Pass) and a very good frequency
stability. The performance of the proposed configuration in all
three modes has been confirmed by PSPICE simulations.

Stability factor

Il

0 10 20 30 40 50 60 70 80 90 100
n

Fig. 12. Variation of S" with respect to n.
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