
ELECTRONICS, VOL. 18, NO. 2, DECEMBER 2014

75

Abstract—Standard versions of blood separators typically use

medium-price color sensors for a detection of a boundary level
between red blood cells and plasma, at the last gate – at hose
clamps. Discrete number of sensors is related to a number of
significant levels to be detected thus making blood separation
potentially faulty and unreliable. Our target was to make
flexible, low cost replacement for level detection system that can
be easily integrated into the existing product. We came up with
an image processing solution that uses USB web-camera, ARM
based off-the-shelf board – BeagleBone black and free OpenCV
library. Flexibility is held in much higher, selectable number of
levels, freely positioned USB camera and brand-free independent
processing platform, as well as semi-automatic calibration
system. By adding minimum additional electronics, we managed
to integrate our solution into existing Blood processing machine.
In conclusion, we added a new value to the machine at lower cost
in production, increasing measurement frequency and resolution
needed for improvement of blood separation process. Next step is
to try to use two USB cameras on a custom-made board, for
simultaneous level detection on two-channel blood separator,
bringing the system integration to the higher level.

Index Terms— Blood separator, red cells / plasma level
detection, USB web camera, BeagleBone black.

Original Research Paper
DOI: 10.7251/ELS1418075P

I. INTRODUCTION
LOOD separation machines are used for separating red
blood cells from plasma. The centrifuged bag of blood is

Manuscript received 20 October 2014. Received in revised form 10

December 2014. Accepted for publication 15 December 2014.
This research and paper were funded by Ministry of science, education and

technical development, through project III44004.
M.Sc. Miloš Petković is with the Faculty of Electronic Engineering,

University of Nis, 14 Aleksandra Medvedeva, 18000 Nis, Serbia (e-mail:
milos.petkovic@elfak.ni.ac.rs).

Miroslav Božić is with the Faculty of Electronic Engineering, University of
Nis, 14 Aleksandra Medvedeva, 18000 Nis, Serbia (e-mail:
miroslav.bozic@elfak.rs).

Dragiša Popović is with the Faculty of Electronic Engineering, University
of Nis, 14 Aleksandra Medvedeva, 18000 Nis, Serbia (e-mail:
gile.sherif@gmail.com).

M.Sc. Darko Todorović is with the Faculty of Electronic Engineering,
University of Nis, 14 Aleksandra Medvedeva, 18000 Nis, Serbia (e-mail:
Darko.Todorovic@elfak.ni.ac.rs).

Prof. Dr. Goran S. Đorđević is with the Faculty of Electronic Engineering,
University of Nis, 14 Aleksandra Medvedeva, 18000 Nis, Serbia (e-mail:
goran.s.djordjevic@elfak.ni.ac.rs).

inserted into machine where it is being squeezed. The bag
content is drained away through two separate tubes, one on
the top and one on the bottom of the bag. Red blood cells are
settled at the lower half of the bag after centrifuging. When
the bag is squeezed they flow through bottom tubing into
another bag. Similarly, lighter plasma flows through top
tubing into third bag. This method is so called top-bottom and
it is common for this type of bags, with top and bottom tube
openings. There are other methods for extraction that use
different types of bags, with different location of draining tube
openings. In order for this particular, top-bottom, method to
be efficient it is important to maintain flows through top and
bottom tubes equal. Plasma is not only lighter it is more fluent
than red blood cells. This means that unregulated draining will
cause all of the plasma to leave the bag before the red cells. If
this happens, a lot of the remaining content will be trapped.
That is why a constant tracking of ratio between those two
liquids is needed. When the balance is lost, a clamp stops the
flow of less dominating fluid. The more dominant fluid
continues to run, eventually returning the balance. When
balance is set again, the clamp is opened.

The ratio between plasma and red cells can easily be
tracked visually. There is significant difference between them
both in transparency and color. A distinctive boundary level
can be seen in the centrifuged bag. Blood separators, currently
available on the market, typically use medium price color
sensors to detect whether red cells reached some level. This
means that there must be as many sensors as there are
significant levels to detect. Usually, it is eight. The total cost
of this solution gets even higher if maintenance is considered.
Specifically, additional drawback that comes with these
sensors is periodic calibration. Increased number of sensors,
due to number of levels, automatically means longer
maintenance time, as well. This increases maintenance fees as
well as loss of profit during halt in machine usage.

The high price, the need for calibration and somewhat
longer maintenance time lead us into search for better
solution.

II. IMAGE BASED LEVEL DETECTION METHOD
We browsed the Internet for existing solutions for blood

level detection in blood separators. We found no papers
written on particular subject. Most blood separator
manufacturers are not sharing design details of their products.

New Blood Level Measurement System in
Blood Separating Machine

Miloš Petković, Miroslav Božić, Dragiša Popović, Darko Todorović, and Goran S. Đorđević

B

ELECTRONICS, VOL. 18, NO. 2, DECEMBER 2014

76

Also no particular patents were found on online patent sharing
sites. However, we found quite a bundle of papers for liquid
level detection in other applications, as well as some
commercial sensors. There are several companies that make
industrial liquid level measuring sensors, based on optical
technologies. Whether they use laser reflection or some other
CCD camera method, they are made for industrial purposes
and harsh operating conditions. E.g. for casting industry
where temperatures rise up to 2000oC, on the contrary, room
conditions where blood separators work are quite regulated,
due to conventions for good blood preservation. Stated make
industrial, off-the-shelf sensors quite expensive and thus in
conflict with design goals. Other inconvenience with most of
liquid level detection sensors is that they are mostly used for
detecting levels in tanks, not small, flexible containers like
blood bags. This primarily means that sensor is placed on top
of rigid container and use some sort of contactless distance
measuring. Without emphasizing any particular solution we
will reference following [1-6]. In [1-4] they are using optical
methods with camera to measure level in tanks. Although not
quite same as what we did, our solution could be described as
their mixture, as it uses similar concepts. [5] and [6] are
referring to liquid level check in bottles. Although they
concentrate on smaller liquid level variation and detection of
badly filled bottles they concern with methods that are of
interest for our solution. [5] gives quite nice comparison of
different image processing methods and their accuracy.
However none of the work of others, that we have found, was
done for liquids in bags.

The solution that we came up with is image processing
based as well. The basic idea is to take video of blood bag,
during the separation process, with commercial USB camera,
and then do image processing, on some mini PC board, in
order to determine boundary level. The camera itself would be
placed inside the machine, facing toward already existing
small window on the side of machine. The current purpose of
this narrow window is to make visual contact between color
sensors and the bag. When the sensors are removed there is
quite enough space for camera to be placed. Furthermore,
body of machine is quite deep, without any parts in the
window region. So the camera can be placed far enough from
the window to capture it wholly. The decrease in needed
distance is also due to wide viewing angles of web cameras.
However we used this extra space to leave possibility of slight
misalignment between camera focal point and center of the
window. So the camera image is set to capture quite an area
around the window. This surrounding area appears mostly
black, since very little light breaks into machine. This creates
quite good contrast between region of interest, which is the
window, and the rest of image. After all initial feasibility
checkups of the use of a generic web camera gave positive
feedback, we went on with image processing algorithm and
processing platform selection.

We considered it convenient to use some off the shelf mini
PC platform for image processing. Mini PC platforms offer
possibility of programming with higher abstraction languages

and easier code portability. They are also available in quite a
number in terms of processing power and other features. We
chose ARM based board - BeagleBone Black [7]. Primarily
cause it was already at our disposal. Another reason is that
there is additional plug-in board (cape) with good video
camera, particularly for this mini PC. Later performance
comparison of this camera cape and a USB camera showed no
significant difference. Since latter is much cheaper, but
equally suitable, we based rest of the research and the solution
on it.

The goal for image processing software was to be as
portable as possible. We decided that OpenCV library is
therefore a good choice [8, 9]. It is a free library that contains
a lot of implemented image processing algorithms, and thus
reduces design time. It is highly portable. It offers initial
development and testing of image processing algorithm to be
done on PC, which is faster than on some mini PC. Latter,
only simple code recompiling is needed for it to run on other
platforms like Beagle Bone Black (BBB). As source code of
library is available, it can be made, with more or less effort,
compatible with any platform. However, already compiled
shared library versions are available for most known mini PC
platforms. Luckily BBB is one of them, which saved us some
time. Shared libraries are even installed on official OS. It is
Angstrom (Ångström) version of Linux. There are other OS
available, like Ubuntu or Android, but we chose to keep using
the initial one, which is farcically pre stored on BBB on-board
flash memory. We would like to point out that previously
mentioned camera cape requires some of processor pins
otherwise used for communications with flash memory.
Therefore, when camera cape is used, OS should be put on
and then loaded from external micro SD card. Although we
used official release of Angstrom for SD card, we have
noticed, during camera cape testing, that it is less stable than
the flashed one. This inconvenience, altogether with already
stated in previous paragraph, put us off the camera cape use.

A. Image processing
As mentioned before, our region of interest (ROI) is the

narrow vertical window on the bag side of a blood separator.
Since both the camera and the window are stationary to each
other during machine run, we decided to use static approach to
extraction of ROI. In other words, ROI always has the same
position in acquired image. So there is no need to constantly
run ROI finding algorithms during separation process. This
greatly reduces necessary processing power of underlying
hardware. Opposed to that, higher number of processed video
frames, or lower response time, can be achieved.

Every time blood separator is started ROI coordinates, in
terms of image coordinating system, are found. This way we
wanted to ensure that possible slight movements of camera do
not reduce measurement accuracy. Potential cause of camera
twitch could be for example rougher machine handling during
transportation. At least, our initial shoddy camera holder was
susceptible to this. It was replaced later on with better one, but
we kept on startup ROI initialization as security measure.

ELECTRONICS, VOL. 18, NO. 2, DECEMBER 2014

77

Anyhow, extraction of ROI coordinates should be fast and
solid. Although there is high contrast between window and
surrounding, we noticed its fluctuations on window
boundaries. As said before, very small amount of light enters
the machine. However, above the window there is a strain
gauge mass measuring sensor, which aluminum body reflects
and scatters light. So, upper side of the window appears pretty
irregular. Other sides also shimmer a bit, from time to time.
We decided that it is best to add fixed frame with four corner
LEDs onto the window. They are solid markers for
rectangular ROI determination. This solution is less ambient
lighting dependent and thus less error prone. LEDs are the
brightest objects on the image and therefore easily extracted,
as it can be seen in Fig. 1. If any additional bright enough
sources appear, they can be discarded by taking into
consideration positional relation of the LEDs to each other.
This makes calibration absolutely accurate.

In order to extract the LEDs position from image, the
following procedure was used. Camera parameters are firstly
set to low exposure and high contrast. Then an image is
acquired. In the next step, erode, dilate and blur functions are
used to eliminate noise and light dots from grabbed image.
This filtering leaves all-black image with four white circles.
At the end, we used Hough Circle Transform [10] to detect
position of white circles. Unfortunately we had to change this
algorithm a bit. The USB web camera, that we used, has some
auto white balancing option that we couldn’t disable. This
means that although very low exposure was set, the camera
itself brightens the image, so it looked like in Fig. 1. Note that
image is rotated for 90 degrees counterclockwise. The
window itself is vertical, but the camera is in portrait position.
It was set this way in order to match window elongated height
with width of 16:9 resolution camera. During development we
rotated image back to vertical position. Later on we left this
code out in order to avoid unnecessary loss of time. If image
from Fig. 1 were submitted to previously described algorithm,
more than 4 white circles would remain in the image. This
means that selection of circles would have to follow. We
thought that this will increase ROI initialization time and went
with different approach. After adjustment of camera
parameters, a frame with all LEDs powered off is taken. Then
another frame is grabbed after the LEDs are light. Difference
between two frames is found, which leaves very few artifacts
for removal. After filtering, that is same as in originally
planned algorithm; image looks like in Fig. 2. It is further
processed with Hough Circle Transform in order to find
coordinates of white circle centers. It should be stated that
OpenCV functions were used for all mentioned steps like
erode, dilate, Hough circle transformation, etc. The last
numbered function, returns both center coordinates and
diameter of recognized circles. How precise this information
is, can be seen in Fig 3. Black dots with coordinates of LED
circles were overplayed over image from Fig. 2. It can be
noticed that they match the centers of LED circles with quite
an accuracy. The rest of white circles are covered with empty
black-line circles. They have same diameters as the ones of

Fig. 1 Unprocessed image from camera, LEDs are turned on. Note that
image is rotated for 90 degrees, the window is normally vertical. This is due
to camera orientation.

Fig. 2 Image of turned on LEDs, after reference frame subtraction and
filtering. Reference frame is taken just before LEDs are light.

Fig. 3 Found coordinates of LEDs, designated with overplayed black dot in
center. The rest of white circles are covered with empty, black line, circles to
designate recognized sizes of white circles.

ELECTRONICS, VOL. 18, NO. 2, DECEMBER 2014

78

LED circles approximated by the function. This information
was used just for the purpose of evaluation of quality of image
filtering and precision of OpenCV functions.

After window coordinates are known, other pre-processing
transformations can be applied. We used only rectification, as
we believed it improves accuracy of the system. Finally, ROI
can be extracted for further processing by a boundary level
detection algorithm.

ROI is extracted from camera image while settings are close
to default ones, typically used with normal ambient light. We
lowered brightness only a little. Since center of LEDs are
slightly away of the window corners, we have reduced ROI
width for arbitrary number of pixels. This doesn’t affect
measurement accuracy. We don’t need all the pixels from the
window’s width to determine boundary line, as it will be
described later in more details.

Image of real ROI can be seen on the right in Fig. 4. Ignore
the solid horizontal full and half line, for now, as they were
overplayed in post processing. The lower portion is red as
transparent red foil was placed over outer side of the window.
The upper part is partial view of our laboratory. It is blurred
by semitransparent blood bag that was also placed at exterior
side of the window. During development, and later on during
testing, this setup was used as a replacement for real bag with
blood. We considered it as quite a good substitute. It should
be noted that this image was acquired on PC. From within the
code, a real time stream of ROI was being shown on monitor.
This is something that is not possible to achieve only with
OpenCV functions on BBB. There seems to be lack of their
proper implementation for this platform. The image was saved
via snapshot tool from within Windows. It is also pre-rotated
in oppose to Fig. 1.-3.

First step in level detection is to find all pixels in ROI that
belong to red blood cells part. Since it appear as the reddest
part in the image, only single threshold level needs to be
determined. All pixels that are red above this level are
considered to belong to red blood cells portion. After
threshold was experimentally determined, OpenCV function
“threshold” was used to extract these pixels. The result is
shown on the left in Fig. 4. All pixels that are considered red
as red blood cells are shown as white. Others are black. Due
to lighting conditions, there can appear some black pixels in
white region. We used erode function to remove those rouge
black pixels.

Next step is boundary level search itself. It is determined
according to the average value of horizontal lines. Rapid
change in these average values is a good descriptor of the
boundary line. Initially, we calculated average value of entire
row. However, we noticed that boundary line was slightly
curved at the edges of ROI. Filters and image preprocessing
that we used cause curvature. In order to exclude this source
of error, we reduce average pixel calculation to middle 60
pixels, thus excluding pixels at window edges. However, later
on, results showed that there is no significant increase in
accuracy. This ROI reduction also reduces the processing
time. Finally, rapid change in these average values is searched

in order to determine exact boundary level location within the
window. Again, there is quite distinctive difference in plasma
and red cells color.

After boundary level was found for image on the left, it was
displayed as overplayed gray line over original ROI image in
Fig 4. It could be seen that it is determined with solid
accuracy. The thin black line, which appears above gray line,
comes from boundary line blurred reflection. In other words,
no web camera is able to show edge line with ideal contrast.
So edge lines will always appear as blurred transitions from
one value to another. So we take middle of the edge as an

actual boundary. The other overplayed half lines designate
current position of color sensors. We draw them just to show
how big the increase in resolution can be achieved with our
method.

We are able to determine boundary level position virtually
within accuracy level of about one image line. This is much

Fig. 4 Level detection on processed image. Left image shows recognized red
blood cells portion of bag with white color, and rest of pixels in black. Right
image shows real ROI image with designated found boundary line.
Horizontal half lines mark the current position of discrete color sensors and
gain in accuracy in this method.

ELECTRONICS, VOL. 18, NO. 2, DECEMBER 2014

79

higher resolution than with color sensors. However, since our
system is to be integrated into existing machines, level
conversion is needed. Output from our system is at end with
eight significant levels.

B. Software implementation
As previously said, OpenCV library is used for image

processing. In particular for fetching camera frames, setting
camera parameters, image rotation and rectification, circle
(LED) position extraction, inverting image color and detecting
blood level. All image-processing code is divided into two
functions. One is initialization and calibration function. This
function is called once on every machine start up. It accepts as
input a mode constant. If it is called in service mode then a
checking of ROI is performed. In other words, when camera is
initially inserted it needs to be faced properly toward window.
All four corner diodes must be visible in image. If any of 4
LEDs is not visible due to camera-window misalignment,
function will signal this through second argument. In reality,
this information is communicated back to camera installer
through four LEDs on accompanying board to BBB.
Distinctive relation is made between visibility of corner LEDs
and displaying LEDs on board. If one corner LED is out of
image then corresponding board LED is not shining. When all
four board LEDs are turned on then camera is correctly in
place and service mode can be exited. When the same
function is executed in calibration mode, ROI coordinates are
being calculated as previously described. Also, significant
middle and other levels are determined, as well as other pre-
processing parameters. Separate image processing function
takes frame, applies preprocessing like ROI extraction and
rectification, and searches for boundary level as mentioned.
Function returns detected level.

Other part of software is initialization and communication
code. At startup it initialize BBB used peripherals. Altogether,
7 GPIOs and one UART are used. One GPIO is used as input
and others as output. Input pin is connected to pull down
pushbutton and is used at machine startup to make program
run in service mode. If pushbutton is pressed during software
initialization phase then service mode is activated. Otherwise
it is not checked. So initialization function reads state of input
pin only once at beginning. As previously said 4 outputs are
used for driving signaling LEDs on accompanying board. The
same outputs are used later for signaling level to control part
of machine. One output is used to drive latch enable on those
4 outputs. Latch is inserted between BBB and machine control
part in order to prevent false code readouts during level
change. Last output is used for controlling window LEDs.
They are on only during service mode and calibration. Last
peripheral, UART, is used for communication with blood
separator control unit. A RS232 to RS485 convertor IC is used
to interface these two. BBB UART RTS pin is inverted and
used as input to IC control pin for direction switching. IC is
placed on accompanying board. This board contains all
numbered additional electronics. It was designed as plugin
board for BBB. If all peripherals are successfully initialized

two main threads are created. Otherwise, error code is
displayed on the 4 LEDs. Error codes, as well as status and
other important info are being constantly sent to BBB UART
0. It is BBB default stream, and used normally for debugging.
We used it for this purpose as well.

The main program basically consists of two threads. One
thread is image processing thread. It is infinite loop that calls
the image processing function that returns level. The
following thread code stores returned value into global level
variable and call digital output refresh thread. Digital output
refresh thread has short life cycle. It just refreshes state of 4
output pins and dies.

Second main thread is communication thread. It is plain
infinite loop that listens for any incoming data from the RS
485 communication conversion IC. When it receives message
that is with address of level detection system, it process it and
responds. Basically there are two types of message. One is
address setup message, and other is level query message. We
implemented this according to current machine control unit
protocol. Protocol itself allowed us to send 3 bytes of arbitrary
data. It was quite sufficient. We used one byte for level, one
for system status and third one for error codes.

Whole program was written in C++. Image processing code
was developed and tested initially on desktop PC. It was
afterwards recompiled and linked with OpenCV libs that were
already on BBB Angstrom distribution. We found that these
libraries do not support some OpenCV functions, like viewing
camera stream in live desktop window. Those functions are
primarily important for image processing algorithm
development. So, desktop PC was necessary for development
of image processing part of code. Rest of program code
development was done on desktop PC, but with cross-
compiling and remote testing. In other words, code was
written in Eclipse IDE with cross-compiler and remote system
plugin. When code was compiled it was run directly and
debugged remotely on the BBB. Remote debugging did not go
that smoothly. It failed from time to time for some reasons.

III. TESTING
System evaluation with real blood has too high price tag for

primary testing. It’s not just the price of the blood and their
somewhat unethical accidental wasting. The blood needs to be
kept and handled in a special way. It decays after prolonged
exposure to ambient conditions. It would also be needed to re-
centrifuge once used blood bag. Due to lack of funding,
proper storage and processing machines, we tested our system
using red foil placed over bag filled with water. On image,
they looked similar enough. At worst case, the system would
require only minor reconfiguring before being fully
operational. This primarily means setting some new value for
the threshold level of the red color detection code.

Test showed that level detection works pretty well even
with just room lighting. Nevertheless, we still implemented
separate light source control. As far as time is concerned, it
takes about 230ms to process small 360p image. For higher

ELECTRONICS, VOL. 18, NO. 2, DECEMBER 2014

80

resolution picture, 720p, it even takes 1.2s. The source of long
processing time is image rectification. It requires approx.
200ms for 360p image. This was unacceptable and we were
forced to remove it. However this only impacts, negatively,
cases where camera is highly misaligned with side window.
Such circumstances can easily be avoided if fixed camera
holders are used, that align window and camera. That way less
powerful processing platforms like BBB will suffice.

After rectification removal, processing time was
approximately 30ms for 360p frame. For 720p resolution it
got up to 70ms. This is still less than 0.1s what was the upper
limit set by blood separator manufacturer.

The time itself was measured by comparing BBB system
time before call of the image processing function and after it
returned detected level. Other part of code took no significant
time consumption in overall system cycle.

It is worth noting that processing time could be even faster
if direct frame grabbing from camera was done. We had
another bad experience with OpenCV and BBB. During initial
feasibility check OpenCV was communicating with web
camera properly. However after overall code porting and
system integration, we suddenly came across their
incompatibility. E.g. frames could not be grabbed and some
camera settings were inaccessible. Because of that and lack of
time we had to perform a quick fix. We managed to set
camera properties by executing shell commands, from code,
that invoked Linux default driver. In other words, our program
calls system program that sends commands to default driver.
This can be avoided by using system library for direct
communication with default camera driver. This would reduce
code flexibility to Linux systems only. However most of mini
PC platforms are Linux based anyway. In similar manner we
managed camera frame grabbing, too. One possible reason for
later inoperability between OpenCV and BBB could be driver
update. Also recompiling of the library for BBB could solve
the problem. However at the time of testing we had no time to
determine the correct cause and the later solution worked.

IV. CONCLUSION
We managed to implement image processing level detection

system in blood separation machine. It well surpassed
requirements set by blood separators manufacturer. In other
words, we accomplished level detection at more than 10 times
per second, which is more than enough for the process.

Apart from reducing the system costs, by replacing discrete
color sensors, we managed higher detection precision. Near
the fairy end of bag squeezing, color of the part with red blood
cells tends to lose its strong red color. It becomes somewhat
pale. When this happens, color sensors with fix threshold,
detects it as plasma instead as red cells. Since process is ended
much earlier, approximately 60g of content is left in the bag.
Although remaining content is being collected and re-
separated, some blood processing companies sees this as great
waste. They buy exclusively systems that generate below 30g
of remnant. Our solution doesn’t necessarily use fix threshold.
We believe that, with proper tuning, it can be made to detect

proper boundary level in both cases. In order to accomplish
such feats, we would need to get into second, more expensive,
phase of testing. This would require use of the real blood.

Another development step is to try to use two USB cameras
on a custom-made board, for simultaneous level detection on
two channel blood separator. This would bring the system
integration to the higher level.

After feedback from manufacturer about our system, we
concluded that it would be a really good idea to make a black
box shielding. It should guard the conical region between the
camera and the window, at least. There are various reasons for
this. It would prevent manufacturers to block this empty space
with some other inner component, or prevent a loose wire to
accidently do the same. Black non glossy shielding would
ensure better image contrast. Currently, contrast is reduced
when the machine side is dismantled. Maintenance personnel
would like to be able to run the machine in this state during
troubleshooting and testing. At present state of our system
integration, this would enable ambient light to reflect from
various inner components into camera area and possibly cause
false reading. At last, integration of our system under one case
would make it truly the component for boundary level
measuring for blood separating machines.

Finally, we are still determined to improve our algorithm.
We removed rectification to achieve shorter processing time,
but at the cost of flexibility and self-calibration. It is desirable
to keep these two characteristics and we already have a few
ideas of achieving them. However, our solution is still quite
unique, there are no similar for particular purpose, as far as we
know, and it beats currently used design in both performance
and price.

REFERENCES
[1] T. Wang, M. Lu, C. Hsu, C. Chen and J. Tan, “Liquid-level measurement

using a single digital camera”, Measurement 42, Elsavier, 2009, pp.
604–610

[2] C. Yu, X. Tian, Y. Zhang and Y. Bai, “Liquid Level Measurement by
Using an Image Method”, in Proc. MACE Third International
Conference on Mechanic Automation and Control Engineering, 2012,
pp. 1595-1598

[3] Y. Na, S. Kim, J. Kim and J. Lee, “Development of liquid level control
system using web cam”, in Conf. 11th International Conference on
Control, Automation and Systems (ICCAS), Gyeonggi-do, 2011, pp.
1527-1528

[4] I. Gil, M. Amparo and M. Pozo, “High resolution simultaneous dual
liquid level measurement system with CMOS camera and FPGA
hardware processor”, Elsavier, Sensors and actuators A: Physical 201,
pp. 468-476

[5] K. Pithadiya, C. Modi and J. Chauhan, “Selecting the Most Favourable
Edge Detection Technique for Liquid LevelInspection in Bottles”,
International Journal of Computer Information Systems and Industrial
Management Applications (IJCISIM), vol. 3, Mirlabs, 2011,pp. 034-044

[6] Suntory Limited, “Method and device for detecting average liquid level
in a bottle” U.S. Patent 4733095 A, March 22, 1988.

[7] BeagleBone Black System Reference Manual, Rev A5.2
[8] OpenCV library, v 2.4.8
[9] G. Bradski, A. Kaehler, Learning OpenCV: Computer Vision with the

OpenCV Library, 1st ed. Sebastiapol, CA, USA: O’Reilly Media, Inc.,
2008.

[10] D.H. Ballard, “Generalizing the Hough transform to detect arbitrary
shapes”, Pattern Recognition, vol. 13(2), Elsavier, 1981, pp. 111–122

