
 

 

Abstract—A novel data-driven gradient descent (GD) adaptive 

controller, for discrete-time single-input and single output (SISO) 

systems, is presented. The controller operates as the least mean 

squares (LMS) algorithm, applied to a nonlinear system with 

feedback. Normalization of the learning rate parameter provides 

robustness of the overall system to modeling errors and 

environment nonstationarity. Convergence analysis reveals that 

the controller forces tracking error to zero, with bounded control 

signal and the controller weights. The experiments on the 

benchmark systems support the analysis. 
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I. INTRODUCTION 

ONTROL means decision making. In order to decide well, 

one has to have a goal, as well as, information on a 

controlled process and process environment. Within automatic 

control setup, the goal specifies desired behavior of the overall 

system. Information, regarding the process and influence of the 

environment, is given by the process model and/or process 

measurements. In many automatic control applications process 

model is not available. Instead, process measurements contain 

information on the process behavior. Therefore, many control 

algorithms were developed to cope with this situation. Usually, 

they are referred to as data-driven or model-free. This 

emphasizes situation where control is based, mainly, on the 

available measurement data. In these situations, concepts like 

feedback linearization [1], regardless their firm theoretical 

foundation and good performance, are not applicable. If we 

look back to the past, probably, the first data-driven control 
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procedure is one proposed by Ziegler and Nichols for tuning 

proportional-integral-derivative (PID) controllers. However, 

many data-driven control algorithms were reported in the 

literature, till now. These are virtual reference feedback tuning 

(VRFT), iterative feedback tuning (IFT) and data-driven 

model-free adaptive control (MFAC), to mention a few. The 

VRFT is reference model adaptive control technique. Within 

VRFT framework, it is assumed that controller structure is 

known a-priori and controller parameters are determined by 

system identification procedure, using virtual reference signal. 

It is designed for discrete-time single-input and single output 

(SISO) linear time invariant (LTI) systems. The VRFT 

procedure may produce controller that results in a non stable 

closed loop system [2,3]. The IFT, also proposed for an 

unknown discrete-time SISO LTI system, determines 

controller parameters through iterative gradient-based local 

search procedure. Computation of the gradient of criterion 

function, with respect to the controller parameters, is based on 

available input/output (I/O) measurement data of the 

controlled plant [4]. The MFAC approach, in opposition to the 

VRFT and IFT, was developed for a class of discrete-time 

nonlinear systems. The main characteristic of the MFAC is 

utilization of local dynamic linearization data models. The 

models are computed along the dynamic operation points of 

the closed-loop system. Computation is performed by the 

dynamic linearization techniques, with a pseudo-partial 

derivative concept, based on the real-time I/O measurements 

of the controlled plant [3]. The above mentioned algorithms, 

i.e. VRFT, IFT and data-driven MFAC, are direct adaptive 

control algorithms, as they tune controller without prior plant 

identification procedure. Further, in applications rich with 

measurement data, regarding processes with high complexity, 

neural networks (NNs), with their ability to approximate 

functions through training procedure [5, 1], might be a good 

solution. Specially, in nonlinear control tasks, NNs are 

employed as nonlinear process models and/or nonlinear 

controllers [6, 7, 1]. However, design of an appropriate NN, 

meaning choice of an NN structure, input and output vectors, 

training set and training algorithm, might be a difficult task. 

Within signal prediction applications, we design a model that 

should produce, on its output, the desired signal. Usually, the 

model is parameterized and model parameters are tuned in the 

real-time based on the incoming process measurements, i.e. 
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adaptively, in order to minimize a certain criterion. The 

criterion is a function of the error signal, the signal that 

represents the difference between some desired signal and the 

model output [8]. Similar setup one can find in the automatic 

control reference tracking tasks. In the reference tracking 

tasks, the controller is tuned, so the overall system output 

tracks the reference signal, as close as possible. Thus, adaptive 

signal prediction and reference tracking control are similar 

problems, as they can share the same criterion to be minimized 

through the parameters correction procedure. For the given 

parameterization of the process model, different procedures 

can be applied to achieve optimal value of the model 

parameters, regarding the imposed criterion. The gradient 

descent (GD) approach performs search for the optimal value 

of the parameters, in the parameter space, as it corrects the 

parameter values in direction opposite to the gradient of the 

criterion. A common choice for the criterion is a function of 

the squared error. Models, applied in the signal prediction 

tasks, with the feedback from the output to the input, introduce 

nonlinearity into the signal prediction algorithm. Algorithms, 

based on such models, are referred to as recurrent [8]. The 

least mean squares (LMS) algorithm, as a member of the GD 

class, is a simple, yet most frequently used algorithm for signal 

prediction and system identification. However, it might have a 

poor performance, when applied to a nonlinear signal and in 

varying environment [10]. To that cause, a class of normalized 

algorithms has been developed [12, 8, 9, 10]. They 

successfully cope with process nonlinearity and 

nonstationarity, thus provides faster convergence and higher 

accuracy. The proposed data-driven GD adaptive controller 

relies on the ideas established within signal prediction 

framework. It is direct adaptive controller, designed for 

discrete-time SISO nonlinear system to perform reference 

tracking. The controller is parameterized, thus provides linear 

combination of the reference signal and the output signal 

discrete-time samples. The parameters are tuned, in the real-

time, through the GD procedure, to minimize a certain 

criterion. The criterion is square of the instantaneous output 

error, therefore the algorithm operates as the LMS algorithm 

applied to a nonlinear system with feedback. In order to cope 

with modeling errors and environment nonstationarity, the 

learning rate is modified as in normalized algorithms [9, 10, 

12]. The proposed algorithm has ability of a constant 

disturbance rejection. Convergence analysis of the proposed 

algorithm can be performed, following the approach given in 

[11, 10]. The rest of the paper is organized as follows. In the 

Section 2, problem formulation and the controller design 

procedure are given. The Section 3 gives convergence 

analysis, as well as, analysis of the disturbance rejection ability 

of the proposed algorithm. The Section 4 contains 

experimental verification of the algorithm, while the Section 5 

concludes the paper. 

II.  PROBLEM FORMULATION AND CONTROLLER DESIGN 

PROCEDURE 

It is assumed that the controlled plant is discrete-time 

nonlinear SISO system, described by the equation 
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where ( )y k R  and ( )u k R are the system output and 

input, respectively, 
yn and 

un are the unknown orders, and 

k denotes discrete-time instant. Further, ( )f R   is some 

nonlinear function with continuous partial derivatives with 

respect to its arguments. The controller parameterization is 

given by the equation 
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where ( )r k R  denotes the reference 

signal, ( ); 1,2, ,2i cw k i n are controller parameters, in what 

follows called weights, and 
cn is the controller order. If we 

introduce the following vectors 

1 2 2( ) [ ( ), ( ), , ( )]
c

T

nk w k w k w kw , 

( ) [ ( ), , ( 1)]T

r ck r k r k n   , 

( ) [ ( ), , ( 1)]T

y ck y k y k n   , and ( ) [ ( ), ( )]T T T

r yk k k   , 

where ( )T denotes vector transpose, the equation (2) can be 

written in compact form as 

( ) ( ) ( ).Tu k k k w   (3) 

 

The cost function, as the system output should track the 

reference signal, is defined by 

  2( ) 1 2 ( ),J k e k   (4) 

 

where ( )e k denotes instantaneous error at the system output, 

and it is given as follows 

( ) ( ) ( ).e k r k y k    (5) 

 

The weight vector is updated in the real-time according to 

the equation 

( 1) ( ) ( ).k k k  w w w   (6) 

 

The weights are corrected, through the GD procedure, thus 

minimizing the cost function (4). Therefore, the weights 

correction vector is given by 

( )( ) ( ) ( ),kk k J k   
w

w   (7) 

 

where ( )k denotes the learning rate and ( ) ( )k 
w

denotes 

gradient of a scalar function with respect to the weight vector 

( )kw . In order to compute the weight correction vector (7), 
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first we have to compute the gradient of the cost function 

2
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To determine the gradient on the right hand side of the 

equations (8), we have to compute partial derivatives of the 

error ( )e k with respect to the weight ( )iw k , where 
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Now we introduce 
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Combining (9) and (10) we have 
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Computation of the partial derivatives, on the right hand 

side of (11), will be carried out under the assumption of slowly 

changing weights [13, 8]. Therefore, the following holds 
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At this point, it is worth noting that the coefficients 

( )j k and ( )j k are time varying and they define the 

linearized model of the nonlinear system (1), computed along 

the trajectory that system (1) follows as it advances through 

time. As we assume the system (1) is unknown, the coefficients 

( )j k and ( )j k can not be determined. Even if we can 

determine them, from the available measurement data, to 

represent dominant dynamics of the system (1), the modeling 

error is still present. To remedy the situation, normalization of 

the learning rate parameter, as proposed in [8, 9, 10, 11], will 

be applied. Therefore, we can continue the algorithm 

derivation by taking into account the assumptions 
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In order to compute partial derivatives ( 1) ( 1)iu k w k     

we have to refer to the equation (2). Now, we can distinguish 

two cases. In the first one, the weight ( 1)iw k   is connected to 

the reference signal. Thus, we have 
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and in the case the weight ( 1)iw k   is connected to the 

output signal, we have  
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Let us introduce the following 
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and 
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where ( )kπ denotes gradient, with respect to the weight 

vector, at the system output. Now, the weight update equation 

becomes 
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To achieve normalization of the learning rate parameter, 

first we shall expand the error term (5) into a Taylor series [9] 
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From (5) and (18) we have 
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while from the weight update we have 

( ) ( ) ( ) ( ).i iw k k e k k     (24) 

 

If, for the time being, we neglect higher order terms in the 

Taylor series expansion (22), as well as, influence of the 

modeling errors, which comes through the local 
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gradients ( )i k , then the error term becomes 

2

2
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where 
2
  denotes the Euclidean norm. The error term in 

(25) equals zero for 

2
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The expression (26) has to be corrected to compensate for 

the higher order terms in (22), as well as, for modeling errors, 

thus we have 
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Even though the learning rate (27) provides an optimal 

solution, it might yield a large bandwidth of the overall 

system, which in turn may result with the system instability. 

Therefore, the following learning rate is adjusted according to 

2
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where 0 1  . Thus, equations (2), (20), (21), and (28) 

define the proposed algorithm. From the derivation of the 

algorithm, it is clear that the coefficients   and  , given by 

(13) and (14), the controller order 
cn , the constant C , 

introduced in (28), as well as, the constant   are the designed 

parameters of the algorithm. 

III.  CONVERGENCE ANALYSIS AND DISTURBANCE REJECTION 

The goal of the analysis is to examine whether, the overall 

system can track the reference signal ( )r k r , so both 

signals ( )u k  and ( )y k are bounded. Therefore, the following 

should hold 

lim ( ) 0 lim ( ) ,
k k

e k y k r
 

     (29) 

 

with ( ) uu k L  and ( ) yy k L , where   denotes an 

absolute value, while
uL  and 

yL  are some positive constants. 

In order to (29) holds, the mapping (25) has to be a 

contraction, i.e. 
2

2
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If inequality (30) holds the equation (25) defines fixed point 

iteration, thus (29) holds. The inequality (30) can be written as 
2

2
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Now, we substitute the learning rate ( )k , defined by the 

equation (28), into the inequalities (31), which yields the lower 

bound on the constant C  
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Further, if we refer to the equation (3), we can write  
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Now, from the weight update equation (20), we have  

lim ( ) 0 lim ( ) 0.
k k

e k k
 

  w   (34) 

 

To investigate behavior of ( )k  we proceed as follows 
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where 
2

2
1 ( ) ( ) 1k k   π . Therefore, the following 

holds 
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and, as ( )r k r , we have 
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From (33), (34), and (37) we conclude 

lim ( ) 0 lim ( ) 0,
k k
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which completes the convergence analysis. If the system is 

under influence of  constant disturbances at its output, then 

equation (1) can be rewritten as 

( 1) ( ) ,y k f k d     (39) 

 

where d  denotes the disturbance. It is obvious that 

computation of the partial derivatives (15) is not affected by 

the disturbance, and the algorithm derivation holds in this case. 

However, the disturbance affects the error signal, thus it will 

appear in the Taylor series (22). Thus, if adjust the constant 

C to compensate the disturbance, the analysis holds. 

IV.  SIMULATIONS 

In order to investigate performance of the proposed 

algorithm, the controller was applied, in a reference tracking 

task, on three benchmark processes. In all experiments the 

parameters in the equation (15) were set to 0  and 1  , 

while the learning rate parameter in (28) was set to 0.1  . 

Further, the order of the controller, cn , was varied from 1 to 

15, and values of the constant C were from the set 

{0.1,0.3,0.5,0.7,0.9,1.1,1.3,1.5,1.7,1.9,2.1,2.3,2.5,3,4,5,10} . 

The averaged squared error was adopted as the performance 

measure. 
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A. Experiment 1 

 In the first experiment, the controller was applied to the 

process [7] given by the equation  

( 1) sin( ( )) ( )(5 cos( ( ) ( )))y k y k u k y k u k      (40) 

 
Fig. 1.a Tracking performance of the proposed algorithm in the Experiment 1. 

 

 
Fig. 1.b Control signal in the Experiment 1. 

 

Figures 1.a to 1.c gives tracking performance, control 

signal, and error signal of the proposed algorithm, 

respectively, applied to the system (40), with parameters 

0.5C  and 3cn  . Value of the performance measure was 

0.1059. 

Figure 1.d gives performance surface in the experiment 1. 

Minimum of the performance measure was 0.09166, and it was 

attained for 1cn  and 3C  .  

B. Experiment 2 

 In the second experiment, the controller was applied to the 

process [6] given by the equation  

3

2

( )
( 1) ( )

1 ( )

y k
y k u k

y k
  


  (41) 

 Figures 2.a to 2.c shows tracking performance, control 

signal, and error signal of the proposed algorithm, 

respectively, applied to the system (41), with parameters 

0.5C  and 3cn  . The performance measure was 0.13196. 

 
 

 
Fig. 1.c The error signal in the Experiment 1. 

 

 
Fig. 1.d Performance index in the Experiment 1. 

 

 

 
Fig. 2.a Tracking performance of the proposed algorithm in the Experiment 2. 

 

 
Fig. 2.b Control signal in the Experiment 2. 
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Fig. 2.c The error signal in the Experiment 2. 

 

 
Fig. 2.d Performance index in the Experiment 2. 

 

Figure 2.d gives performance surface in the experiment 2. A 

minimal value of the performance measure was 0.09296, and it 

was attained for 1cn  and 0.1C  .  

C. Experiment 3 

 The third experiment was designed to investigate 

disturbance rejection property of the proposed algorithm. Due 

to that cause, the controller was applied to the process [6] 

given by the equation  

2 2

( ) ( 1)( ( ) 2.5)
( 1) ( )

1 ( ) ( 1)

y k y k y k
y k u k

y k y k

 
  

  
  (42) 

 

Also, at the discrete time instant 370k  , the step 

disturbance of the amplitude 0.2d  was applied to the system 

output. In this case, a minimal value of the performance 

measure was 0.02527, and it was attained for 1cn  and 

0.1C  . Figures 3.a to 3.c gives tracking performance, control 

signal, and error signal of the proposed algorithm, 

respectively, with parameters 0.1C  and 1cn  .  

Figure 3.d shows a performance surface in the experiment 3. 

The minimal value of the performance measure was attained 

for 1cn  and 0.1C  .  

V.   CONCLUSIONS 

The new data-driven GD adaptive controller, for discrete-

time nonlinear SISO systems, has been proposed. It was 

designed for the reference tracking tasks. The controller has 

simple structure, i.e. it is linear combination of the reference 

signal and the output signal discrete-time samples. Parameters 

 
Fig. 3.a Tracking performance of the proposed algorithm in the Experiment 3. 

 

 
Fig. 3.b Control signal in the Experiment 3. 

 

 
Fig. 3.c The error signal in the Experiment 3. 

 

 
Fig. 3.d Performance index in the Experiment 3. 

 

of the controller are updated in the real-time, as in the case 

of the LMS algorithm applied to a nonlinear system with 

feedback. The algorithm is robust to the modeling errors and 

environment nonstationarity, due to the learning rate parameter 

normalization. The convergence analysis has been provided. 

The controller forces tracking error to zero with bounded 

control signal and controller weights. The experiments, on the 
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benchmark systems, demonstrate performance of the proposed 

controller and support the analysis.  
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