

Abstract—This paper describes a new verification environment

for USB 2.0 controller. New methodology is presented, where a

co-simulation environment is used as one of the starting points for

the embedded hardware/software development and as an

accelerator of the overall design process. The verification

environment is based on the device emulation/virtualization

technique, using USB controller’s real register transfer level

(RTL) instead of models. This approach is functionally very close

to the corresponding real-world devices and allows wider

opportunities for hardware debugging. The new software utilities

for USB host and device functionality testing are also presented.

This tool allows generating custom tests by including various

transfer types and modifying parameters such as data payload,

interval, number of pipes, etc. It can be used for both hardware

(HW) and software (SW) limitations characterization, as well as

debugging.

Index Terms—Co-simulation, FPGA, System C, QEMU, USB

Original Research Paper

DOI: 10.7251/ELS1418023G

I. INTRODUCTION

HE Universal Serial Bus (USB) is a fast, bidirectional,

low-cost, dynamically attachable communication interface

consistent with the requirements of the present microelectronic

platforms [1]. It is widely used in the huge number of

instruments and devices, which include personal computers,

digital cameras, scanners, image devices, printers, keyboards,

mice, telephones, embedded systems, systems on a chip (SoC),

etc. Fig. 1 shows the high-level architecture diagram of USB

controller within a typical system.

Field programmable gate array (FPGA) based techniques

can be used for verification and functional debuging in design

flow of USB IPs. In this approach, hardware core is mapped

onto an emulation platform, based on an FPGA that mimics

the behavior of the final chip, and the software modules are

loaded into the memory of the emulation platform. Once

programmed, the emulation platform enables testing and

debugging of hardware (HW) and software (SW) components,

close to system’s full operational speed. In fact, FPGAs are

used primarily to speed up testing and make some parts of the

verification easier. Various components of USB system can be

Manuscript received 13 April 2014. Accepted for publication 30 May

2014.

G. Y. Zargaryan, V. K. Aharonyan, N. V. Melikyan are with the Synopsys

Armenia CJSC (e-mail: {grigorz, vahrama, nazeli}@synopsys.com).

M. A. Dimitrijević is with Faculty of Electrical Engineering, University of

Niš, Niš, Serbia, (+381-18-529-321; e-mail: marko@venus.elfak.ni.ac.rs).

prototyped and verified using FPGAs. In [2] the development

of USB peripheral core on the FPGA is described. USB

protocol analyzer and the core were implemented for

verification. For example, only UTMI logic can be designed

using VHDL code, then simulated, synthesized and

programmed to the targeted FPGA [3]. But the drawback of

both approaches [2], [3] is that designed components were not

fully validated in complete USB system (including host, USB

SW stack, etc.).

USB 3.0

controller

ULPI PHY

PIPE PHY

ULPI

PIPE

A
p

p
li

ca
ti

o
n

 B
u

s

Master

Slave I/F

SSRAM

D
at

a
F

IF
O

R
A

M
 I

/F

CPU

Memo

Peripheral 1

Peripheral 2

Interrupt

Another drawback of FPGA based HW verification can be

relatively slow debugging of signals, when some problem in

register transfer level (RTL) emerges. If the developer wants

to look at some signals generated in the core, he needs to

perform some modifications in RTL, connect appropriate

wires to the debug pins of chip, resynthesize logic, connect

analyzing osciloscope tools like Logic Analyzer and trigger the

signals or use JTAG cable to connect to FPGA and store

necessary signals in RAM memory supported (which requires

more resources) and finaly study signals from this store point.

If the developer is trying to proceed directly with RTL

validation in real system using FPGAs, problems can occur

with the absence of other USB system’s components (USB

PHY chip, programmable processor of SoC, memory access

unit, etc.).

On the other hand, in order to actually validate and use the

implemented USB hardware in applications running by SoC or

some other system, the software layer that encapsulates the

underlying hardware and provides the application developer

defined API (at minimum it is the so called hardware driver or

the hardware abstraction layer; often it contains more software

layers like OS modules) should be developed. Thus, only

hardware subcomponents (in this case USB IP core licensed

by suppliers) become a combination of hardware and software.

USB HW/SW Co-Simulation Environment with

Custom Test Tool Integration
Zargaryan Y. Grigor, Aharonyan K. Vahram, Melikyan V. Nazeli and Marko A. Dimitrijević

T Fig.1. System-Level Block diagram including USB controller.

ELECTRONICS, VOL. 18, NO. 1, JUNE 2014 23

In this case, bare USB hardware IP is not enough.

Development of this software usually starts when the hardware

part is finished (or almost finished) and can be prototyped in

an FPGA device. This may considerably extend the project

timeframe. Early software development based on virtual

prototyping is getting more popular at system level, but in the

IP development it has not become a common practice yet. To

overcome the above mentioned problems, the necessity arises

to have a complete emulation and simulation environment for

USB coreduring controller design flow, .

II. BACKGROUND OF KNOWN METHODS FOR SIMULATION AND

VALIDATION OF USB CONTROLLER

SystemC [4], [5] has solved many of the software-hardware

co-simulation issues today, and software based verification

perfectly supports the new IP packaging requirements (i.e.

requirement to deliver hardware dependent software along

with the hardware component). Therefore, to design a USB

controller HW in a faster manner and to begin the

development of necessary drivers in the first stage of the

design, various modeling and verification methods have been

suggested. In [6] USB device simulation using Microsoft

Device Simulation Framework (DSF) is presented, which

allows quick construction of a virtual mass storage USB

device having final RTL architecture, but DSF does not

provide sufficient capabilities for USB simulation and

validation, and offers only smoke tests (i.e. file copy from and

to). Paper [7] describes the way of simulation and validation

system design for USB peripheral device’s Verilog HDL code

using SmartModel tools which include functions of USB 2.0

host and UTMI. This environment tests main functions of

device peripheral without SW stack (Start of Frame packet

generation, handling of Split transfers, ping protocol, etc.).

Paper [8] presents the USB host controller verification

environment using Transaction Level modeling (TLM), but

this environment actually does not cooperate with RTL, nor

USB host software, delivered as the final package to the user.

Only in [9] an example is given of design flow that includes

real HW (described in RTL language) validation with SW

stack. Here, SystemC TLM is used for hardware architecture

definition and preliminary SW development, in the first step.

RTL verification and prototyping is the next step. User-level

test is done only after USB RTL prototyping to the FPGA.

In this paper, a new approach to HW/SW co-simulation and

verification technique is proposed, using two entries of USB

Super-Speed (SS) core acting as a host and device. It allows

testing and validation of Verilog HDL code of USB core

together with depending software (SW) drivers, whole Linux

USB stack, running real user level applications (for either

smoke or stress tests, or specific protocol testing means [10]),

which makes simulation very close to real testing and

debugging. The main role of the simulation environment is to

make the USB controller work in real physical world

conditions prior to implementation on FPGA or ASIC. The

USB host and device controllers are attached to the emulated

x86 PCs running 3.6.3 Linux kernel using PCI bus. The

simulation environment provides full access to all signals of

RTL, during and after simulation. The possibility of capturing

and analyzing data packets sent and received over USB bus is

also provided. PC systems are emulated using QEMU open

source virtualization software which works straightforwardly

with verification environment, considering it as a combination

of two real-world Linux systems connected to each other via

USB. Another important advantage of this method is that the

other USB controller (EHCI, OHCI, USB 3.0 xHCI) RTL

codes can be easily integrated into verification environment as

well, after specific changes in Verilog source code of USB

PHY model. As Linux OS runs on emulated PC, the validation

of these controllers with corresponding drivers included in

Linux kernel becomes suitable and does not require any

specific changes in the SW stack.

The testing of complete USB hardware and software

environment is performed using certification tools – USB CV,

USB GoldenTree environment, WHCK, etc. [11], [12]. A

majority of these tools run on the final product and cannot be

used during early stages of the USB controller design. For

Linux systems there is a combination of ustbtest class and

g_zero gadget drivers [10], which allow generating traffic on

the various pipes of the host and device controllers either on

final product or using co-simulation environment. Actually,

this tool is for USB 2.0 mode only and does not allow testing

various configurations and interfaces, changes of test

parameters, etc. This paper also presents new testing tool

integrated within suggested co-simulation environment that

provides flexible interface for generating custom tests running

in USB 2.0 and 3.0 modes, gathering statistics on the test

results and observing failures.

III. QEMU VIRTUALIZATION SOFTWARE

QEMU [11] is a processor emulator that relies on dynamic

binary translation in order to achieve a reasonable speed.

QEMU is easy to port on new host CPU architectures. In

conjunction with CPU emulation, it also provides a set of

device models, ensuring possibility to run a variety of

unmodified guest operating systems. It can thus be viewed as a

hosted virtual machine monitor. It also provides an accelerated

mode for supporting a mixture of binary translation (for kernel

code) and native execution (for user code). It has two main

modes of operation [12], [13]:

 User mode emulation - QEMU can launch processes on

CPUs that are compiled on another CPU. It is used to ease

cross compilation or cross-debugging.

 Full system emulation - QEMU emulates a full system (for

example PC), including processors and several peripherals.

The second mode is used to launch different kinds of

operating systems on the same PC, as virtual machines. This

mode is used to build co-simulation environment. One of the

main advantages of QEMU is the fact that it runs in user space.

There is no kernel module and therefore no adherence with the

host system. It is executed like any other application. QEMU

24 ELECTRONICS, VOL. 18, NO. 1, JUNE 2014

is a layer oriented application. The highest layer in QEMU is

the lowest layer for the system inside the emulator (i.e. the

hardware).

Basically, QEMU supports various processor architectures

but in terms of this task Intel x86 is used. QEMU can emulate

several hardware controllers such as CD-ROM, IDE hard disk

interface, parallel and serial port, sound card, USB controller,

etc. QEMU also emulates a PCI UHCI USB controller. User is

able to virtually plug virtual USB devices or real host USB

devices and emulator will automatically create and connect

virtual USB hubs which is necessary to connect multiple USB

devices. This is based on QEMU internal models of UHCI

controller, and it allows to validate real USB controller.

IV. PROPOSED USB RTL/SW CO-SIMULATION APPROACH

The main difference and novelty of this approach from

known verification/simulation methods is that the real RTL

implementation of the core (not TLM or any other model of

the controller) is co-simulated using virtualization, giving a

chance to perform complete functionality tests on USB IP.

The simplified block diagram of co-simulation environment

is presented in the Fig 2. Two entries of SS RTL core are

interconnected via PHY model, written in Verilog. Advanced

High-performance Bus Verification IP (AHB VIP) performs

memory read/write actions between the system and the USB

controller (handling any action regarding data

reception/sending, direct memory access (DMA) actions,

control and status registers (CSR) read write, etc.). Using

QEMU, two x86 based PC systems are emulated as host and

device, and both work with implemented Direct Programming

Interface (DPI) which allows higher level Linux/QEMU C

code to communicate with Verilog/Vera implementation and

vice versa. User-level application, device and host drivers as

well as Linux OS make the software layer of environment.

User level USB testing application is registered on the driver

and installed in Linux.

One of the main components of designed verification

environment is the DPI layer, serving as a bridge between

SVerilog/Vera and C code domains. DPI consists of two

layers: A SVerilog/Vera Layer and a C language layer. Both

layers are isolated from each other. DPI allows direct inter-

language function calls between the SVerilog/Vera and C

language. The functions implemented in C language are called

from SVerilog/Vera and such functions are called Import

functions. Similarly, functions implemented in SVerilog/Vera

code domain can be called from C language, such functions

are called Export functions. DPIs allow data transfer between

two domains through function arguments. The main functions

of DPI are forward DMA reads and writes initiated by RTL to

memory in ‘C’ domain, report interrupt status to ‘C’ domain,

execute processor (‘C’ domain) Read/Write to registers inside

the core, control advancing simulation time while performing

one of these actions. In Fig. 3 the common mechanism of DPI

implementation is shown. For example dma_read function that

is implemented in C code domain should be imported to

SVerilog/Vera code, and correspondingly after implementing

ahb_read_vr task in SVerilog/Vera file, it should be exported

there and declared as extern function in C code. The main

specific thing here is that requests from SVerilog/Vera domain

to ‘C’ domain have highest priority and are implemented as

blocking statements. They must be executed in ‘0’ simulation

time.

AHB Master VIP AHB Slave VIP

AHB VIP

QEMU - Verilog DPI Interface

QEMU (device)QEMU (host)

Linux OS Linux OS

Host driver Device driver

PHY Model

Frame Generator

SS Host SS Device

S
la

v
e

M
as

te
r

S
la

v
e

M
as

te
r

User-level
application

User-level
application

Fig. 2 Block diagram of co-simulation environment.

 C domain

 void dma_read(int addr, int* value) { };

 extern void ahb_read_vr(int*data, int addr, int
length)

 SVerilog/Vera domain

 import "DPI" context task dma_read(integer addr,
var integer value);

 export "DPI" task ahb_read_vr { };

Fig. 3 Direct Programming Interface.

Co-simulation environment runs in three processes

simultaneously: VCS simv, QEMU host, and QEMU device.

The flow of building and running developed environment is

shown in Fig. 4. It consists of the following major steps:

ELECTRONICS, VOL. 18, NO. 1, JUNE 2014 25

• Compiling Linux kernel, QEMU C-sources using gcc.

Compile RTL sources of USB controller, SS PHY model using

VCS tool, integrate DPI (result will be simv simulation

executable).

• Compiling and installing the developed driver for USB

controller, setup USB user level testing utilities.

• Running three threads on Linux machine: QEMU Host,

QEMU Device and simv executable (HW simulation)

• Loading SW modules on QEMU emulated devices, run

user-specified tests,

• Debugging with the use of VPD file (signal diagrams

from RTL simulation are shown in Fig. 5), console logs.

It is important to note that after running QEMU host and

device threads, third thread responsible for running simv

executes simulation of the whole Verilog/Vera code domain

including USB core RTL. On both systems SS USB core is

registered on PCI bus and system times are synchronized with

simulation time to ensure absence of concurrencies between

them and RTL simulation time. At this point, virtually

emulated PCs have fully functional SS USB controller on their

disposal. While loading core drivers on both sides, OS are

requesting recourses using communication interface with PCI

registered devices (mapping memory, interrupt line allocation,

driver registering in OS, etc.) and proceeds with USB cores

initialization. Afterwards USB host detects device connection,

notifies upper layers of Linux USB stack and initiates USB

bus reset to begin enumeration. After successfully passing

enumeration, user level USB testing application can be

executed in this environment to validate USB core RTL/SW

combination.

Fig.5. Signal diagrams from RTL simulation on USB core.

V. USER LEVEL USB TESTING APPLICATION

Implemented test tool consists of three modules – test

application, class driver and gadget driver. The last one is

loaded on the device side of the USB environment and the first

two are executed on the host side. The architecture of the

implemented test environment is shown in Fig. 6.

Fig. 6 Testing application architecture.

Test application provides the command line user interface

for test cases execution. Test application parses the command

line options, analyzes the test parameter values, checks

availability of the corresponding pipes and sends appropriate

commands to the Linux test class module for further test

execution and final results reporting.. The mentioned class

driver is the interface between test application and USB Host

controller driver. Class driver creates USB transfer blocks,

submits USB requests to the USB core with defined

communication protocol, and report results to test application

after completion. The implemented testing gadget driver

submits transfer requests to the underlying Peripheral

Controller Driver (PCD) and handles their completion. The

gadget driver is responsible for data verification for OUT

transfers and for data generation in IN transfer mode. There

are also loop back mode tests, when the host writes the data to

Fig. 4 Co-simulation environment setup and run flow.

Linux, QEMU C

code compilation

Controller driver,

testing application

compilation

USB core RTL, SS PHY model,

vera source compilation

simv executable

creation

Run threads of QEMU Host and device, simv

simulation

Load SW modules on

Linux OS of QEMU

devices

USB

Enumeration

success

Run User specified tests

on USB core RTL/SW

Result analysis and debug

(console logs, VPD

diagrams)

Host Device

 EHCI Host Controller
 XHCI Host Controller
 Test module
 User Interface

 Test Gadget
 PCD

26 ELECTRONICS, VOL. 18, NO. 1, JUNE 2014

the device first, then reads it back and verifies its accuracy.

For communication between host and device, vendor

specific protocol is developed (Table 1) in addition to standard

USB requests.

User interface module is a command line interface. Each

test case (or group of test cases) needs to be configured

individually with flexible input arguments through user

interface module. Each configuration parameters can be

divided into the following groups: endpoints parameters which

represent endpoint descriptors main fields and endpoint’s pair

number (interface, number, direction, type, and max packet

size), test parameters (mode, transfer size and iteration count).

A special algorithm is developed to handle errors. The

transfer buffers are filled with data using implemented

algorithm. This algorithm is common for the test gadget and

the host test module. Depending on the direction of the test,

the test module or test gadget will fill the transfer buffer. The

other part will verify the received data.

The USB test gadget provides functionality for

implementing the Communication protocol. The test gadget

handles all vendor specific requests, controlling endpoints and

interface.

VI. STATISTICS AND TEST RESULTS

Co-simulation environment requires significant resources

from host Linux machine. The analysis shows that major CPU

load is caused by simv executable running. Simulation

profiling shows that about 50% of CPU utilization by simv is

due to Verilog modules (core RTL design itself). The basic

timing statistics of co-simulation and CPU utilization are

follows:

• Compilation done – time 7.2 min (performing once

during setup)

• QEMU Host and Device booting – 2.5 min

• Driver loading done – time 1.3 min

• Core Initialization by driver done – time 1.2 min

• Simulating 1mSec – time 3.6 sec

• CPU Utilization Profile [%]: total time 20 min

Direct Programming Interface (DPI) 1.53%

Programming language interface (PLI) 24.45%

VCS for writing VCD and VPD files 6.82%

VCS for internal operations (KERNEL) 15.86%

Verilog Modules 50.69%

A SystemVerilog testbench program block 0.38%

Garbage Collector(PROGRAM GC) 0.27%

As it is shown in statistics analysis, it takes about 3–4s of

real time to simulate 1 ms of hardware work. Hence basic file

copy test between host and device systems via USB, with data

size, for example, 1MB takes about 3 minutes of real-time, but

based on simulation time copy is performed with 46-60MB/s

speed.

After driver loading phase and USB cores’ initialization by

SW on emulated host and device systems, various tests are

performed using the suggested test utility – control, bulk,

isochronous and interrupt traffic generation in both IN and

OUT directions. Also, test parameters like maximum packet

size, interval for periodic endpoints, burst for USB 3.0

transfers, stream count, etc. were modified during tests.

Obtained results are captured in Table 2.

VII. CONCLUSIONS

In this paper a new approach to USB controller RTL and

driver co-simulation and verification method is proposed. The

suggested method is based on virtualization techniques

(QEMU emulator) using USB SS core. The method is based

on the idea of using a real USB controller RTL model, instead

of TLM or other abstract models. The designed environment

allows identifying/debugging USB HW design easily,

debugging device driver before real tests on FPGA or SoC,

TABLE 2. LINUX USBTEST UTILITY TEST RESULTS IN CO-SIMULATION

ENVIRONMENT

T
es

t

D
es

cr
ip

ti
o

n

M
ax

 p
ac

k
et

si
ze

M
ax

 b
u

rs
t

si
ze

T
r.

 s
iz

e

In
te

rv
al

D
u

ra
ti

o
n

R
es

u
lt

Bulk in 1024 0 0.1M - 0.328s Pass

Bulk in 1024 10 0.1M - 0.18s Pass

Bulk out 1024 0 0.1M - 0.331s Pass

Bulk out 1024 10 0.1M - 0.19s Pass

Control in 512 - 1M - 2.083s Pass

Control out 512 - 1M - 2.063s Pass

Isochronous

in

1024 0 10M 1 1.5s Pass

Isochronous

out

1024 0 16K 14 19.09s Pass

Request Mnemonic Description/Purpose

DEV_CAP
The device will return the

device capabilities.

CONF_EP_IF

Allows the host to change the

parameters of endpoints and

configure an interface.

TEST_SETUP
The host sets the test

parameters.

TEST_STAT
The device will return the Test

Case status.

CONTROL_WRITE
Writes data to the control

pipe.

CONTROL_READ
Reads data from the control

pipe.

SET_TR
Provides to device for setting

up a transfer for an Endpoint.

RET_RES

The device will return the

results of the most recent

transfer.

DEV_RESET
Resets the Device or Interface

to a known state.

TABLE 1 VENDOR SPECIFIC PROTOCOLS

ELECTRONICS, VOL. 18, NO. 1, JUNE 2014 27

reproducing and debugging issues emerging in the real

circumstances using signal diagrams obtained from simulation,

beginning device driver development and testing when

hardware is not available yet. A user level USB testing

application is also developed, which allows running custom

tests with various test parameters using different speeds. The

implemented application has the ability to ensure four types of

transfer running in virtual environment. The method is flexible

and does not depend on the USB controller or any other USB

IP’s RTL, and can be easily integrated into the environment

after minor changes in the USB PHY model.

REFERENCES

[1] Universal Serial Bus 3.0 Specification. Rev 1.0. - June 2011,

www.usb.org

[2] De Maria, E.A.A., Gho, E., Maidana, C.E., Szklanny, F.I., Tantignone,

H.R., A Low Cost FPGA based USB Device Core // IEEE 4th Southern

Conference on Programmable Logic, 2008, pp. 149-154.

[3] Babulu, K., Rajan, K.S., FPGA Implementation of USB Transceiver

Macrocell Interface with USB2.0 Specifications // ICETET '08. First

International Conference on Emerging Trends in Engineering and

Technology, July 2008, pp. 966-970.

[4] IEEE Computer Society, IEEE Standard System C Language Reference

Manual, 2005, pp. 423.

[5] OSCI, Transaction Level Modeling(TLM) Library, Release 1.0, 2005

[6] Anderson, R.B., Borowczak, M., Wilsey, P.A., The Use of Device

Simulation in Development of USB Storage Devices // IEEE 41st

Annual symposium, 2008, pp. 220-226.

[7] Xiaoping, B.; Shenlei, The Study on System Verification of USB2.0

Interface Protocol Control Chip Hardware Design // ICEE '07.

International Conference on Electrical Engineering, 2007, pp. 1-5.

[8] Puhar, P., Zemva, A., Functional Verification of a USB Host Controller

// IEEE 11th EUROMICRO Conference on Digital System Design

Architectures, Methods and Tools, 2008, pp. 735-740.

[9] Soba ski, I.; Sakowski, W., Hardware/software co-design in USB 3.0

mass storage application // IEEE International Conference on Signals

and Electronic Systems (ICSES), 2010, pp. 343-346..

[10] USB Testing on Linux, March 2007, http://www.linux-usb.org/usbtest/.

[11] SuperSpeed USB Compliance Testing

http://www.usb.org/developers/ssusb/testing

[12] QEMU open source processor emulator, http://www.qemu.org, 2013.

[13] Ribi re, A., Emulation of obsolete hardware in open source

virtualization software // IEEE 8th IEEE International Conference on

Industrial Informatics (INDIN), 2010, pp. 354-360.

28 ELECTRONICS, VOL. 18, NO. 1, JUNE 2014

