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Abstract—A novel adaptive clustering procedure is presented 

in this paper. Among the basic properties of the proposed 

algorithm is that the number of clusters is not known a priori, it is 

updated automatically based on the available data. Previous 

knowledge regarding data source (data generating process), if 

available, can be used for initialization purposes. However, the 

algorithm can be used even if such information is not available. 

The entire data set need not be known in advance, and further, 

the algorithm does not store previously seen data points. The 

computation complexity is relatively low and the entire procedure 

may be implemented recursively (in “real-time”). The proposed 

procedure is designed primarily for condition monitoring and 

fault detection in industrial plants. Performances of the proposed 

algorithm have been demonstrated by an illustrative example. 

 
Index Terms—Classification, clustering, novelty identification, 

fault detection and isolation (FDI), condition monitoring. 

 

I. INTRODUCTION 

 NUMBER of classification and clustering techniques 

have been applied successfully in various fields of 

science and engineering. A general overview of different 

statistical procedures can be found in [1], while a gamut of soft 

computing techniques, including techniques based on artificial 

neural networks, support vector machines (SVMs) and fuzzy 

logic, is presented in [2]. 

Most of the proposed techniques are capable of 

distinguishing among several fixed and a priori known classes 

(cluster centers). There are however cases in which all classes 

are not known in advance, and also cases where the properties 

of the existing classes change (evolve) over time. In such cases 

it would be preferable to use a classification algorithm which 

is capable of learning from the input data stream and evolving
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(adapting) with it. 

Fault detection and isolation (FDI) is an important filed of 

modern process engineering. A survey of modern approaches 

to fault diagnosis can be found in [3]-[5]. It has been claimed 

[3] that any fault diagnosis technique can be seen as (or at least 

reduce to) a classification procedure: a fault is either present or 

it is not. A more sophisticated diagnosis classifier would even 

be capable of distinguishing among different types of faults, 

and thus perform fault isolation. However, it is rather difficult 

to develop a diagnosis procedure which would be capable of 

identifying novel faulty conditions, ones not seen during 

design phase. Also, most FDI techniques are incapable of 

coping with the drift of some of the existing working 

conditions. The ability to identify novelties and adapt to the 

changing environmental conditions is identified as one of the 

desirable features of any fault diagnosis technique [3]. 

The aim of the present paper is to present an adaptive 

clustering procedure capable of identifying novelties and 

respond to changes in the input data stream. When applied in 

an FDI setting, the proposed procedure should be capable of 

detecting working conditions which occur for the first time 

during the exploitation of the algorithm. These newly 

recognized working conditions can be labeled as either 

nominal or faulty by an experienced operator. The proposed 

technique can be seen as an evolving classifier and is inspired 

by the on-line identification procedure proposed by Angelov 

and Filev in [6], as well with the eClass family of evolving 

fuzzy classifiers [7]. It is also of interest to note that a 

preliminary version of the proposed algorithm has been 

addressed also in [8] and [9], where a number of experimental 

case studies have been considered. The proposed technique 

may be seen as an alternative to the classical model-based fault 

detection techniques [10] and also to hybrid fault detection 

techniques, such as the one presented in [11]. 

The key underlying notion of information potential is 

introduced in Section II. The information potential used here is 

different than the information potential utilized in [7]. The 

general structure of the proposed adaptive clustering procedure 

is presented in Section III. Specialization of the proposed 

algorithm for FDI purposes is described in Section IV. 

Experimental results are presented in Section V. Concluding 

remarks are left for Section VI. 
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II. INFORMATION POTENTIAL 

In [7] Angelov and Filev proposed an adaptive clustering 

procedure relying on the notion of the information potential. 

An information potential of a point with respect to an ordered 

set of points is a measure of similarity between the point and 

the set. If the information potential of a point is high, the point 

is representative with respect to other points within the set. 

Points with the highest values of the information potential are 

candidates for cluster centers. 

Let us define the notion of the information potential more 

formally. Consider a set of n  features, each of which is 

represented as a real number. The feature space F  is therefore 

a subset of 
nℜ . Let ∈z F be an arbitrary feature vector and 

let { | 0.. }j Nj= = ⊆zZ F  be an ordered set of known feature 

vectors. The assumption is that the classification is made on-

line, recursively as each new feature point becomes available. 

Elements of the feature set are ordered in the same sequence 

they become available: 0z is the first obtained feature vector, 

Nz  is the most recent one. In order to emphasize the 

generality of the proposed classifier, the feature vectors will be 

denoted simply as the data points.  

The mean square distance of a data point z  with respect 

to the ordered data set Z is defined as [7] 
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transposition. As usual, all vectors are implicitly assumed to be 
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The important property of the information potential is that 

its value cannot change abruptly. The information potential is 

computed with respect to all previously seen data points, and 

thus if the underlying data shift in the feature space, it would 

take some time for the value of the information potential to 

reflect this change. Normally this is good and desirable, since 

it is the basic mechanism providing resilience to measurement 

noise. Any outliers, invalid and noisy data points, would 

typically be isolated and thus would not have the capability of 

significantly changing potential values. However, in the fault 

diagnosis setting, the fact that all previous data points are 

taken into consideration may impose a significant drawback. It 

is the nature of faults to appear after long periods of nominal 

process operations. Depending on the sampling rate, after 

some operation time the nominal data points in Z  will vastly 

outnumber faulty ones. Consequently, the ability of the 

average square distance (and thus also the information 

potential) to detect changes in the feature data stream will be 

impaired. 

To overcome this problem, the notion of mean square 

distance will be redefined in the current paper. Let us define 

the exponentially windowed mean square distance between 

an arbitrary data point z  and all data points belonging to Z  

as 
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where |||| ⋅  may, in principle, denote an arbitrary norm in the 

feature space. In the sequel, however, |||| ⋅  will always denote 

the weighted Euclidean 2-norm, defined as 

 

|| || T=x x Wx  (5) 

 

with W  being a suitably chosen, positive definite, symmetric 

matrix. Practically, the weight matrix is usually diagonal, and 

serves the purpose of data scaling. Thus, the overall mean 

square distance (1) is replaced by the mean square distance (4) 

which effectively takes into consideration the recent points 

only. In fact, only the points appearing within an exponential 

time window are accounted for. The parameter λ  controls the 

width of this window and has the same purpose as the 

forgetting factor in the recursive least squares algorithm. The 

λ  parameter should be chosen in range ]1,0[   Depending on 

the sample rate, the noisiness of the signal and the dynamics of 

the process, the usual choice is between 0.9 and 1. 

The information potential can be defined as a Cauchy 

function of the newly introduced exponentially weighted mean 

square distance (3). This is the approach proposed in [7] and 

also used in [9]. It is however also possible to use other, more 

general definitions. Let us define the potential of a data point 

z  with respect to the data set Z  as a positive, real-valued 

mapping of the exponentially weighted mean square distance, 

( , , ) ( ( , , ))P P Sλ λ≡z zZ Z , with the following properties: for 

all 0S ≥ ,  

(P1) ( ) [0,1]P S ∈ , 

(P2) ( ) 1 0P S S= ⇔ =  

(P3) ( ) 0P S S= ⇔ → ∞  

(P4) P  is a differentiable, monotonically decreasing 

function of S , '( ) 0P S < .  

The first property (P1) simply states that a potential takes 

values from a compact set [0, 1]  . The property (P2) states that 

a point z  has the potential equal to 1 if and only if all the 

points in Z  are equal to z , i.e. if and only if for all j ∈z Z , 

j=z z . (P3) states that the potential becomes equal to zero if 

and only if the distance to at least some point in Z  grows 

without an upper bound; a situation which is not to be 

expected in practice. (P4) implies that there is a well-defined 
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inverse function 
1 :[0,1] [0, ]P− → +∞ . It is easily seen that the 

Cauchy-type function (3) satisfies requirements (P1)-(P4). 

Any functions satisfying properties (P1)-(P4) can be 

considered as a mean proximity measure. In fact, the clustering 

procedure can be designed solely on the basis of the mean 

square distance, but it is more convenient to use the notion of 

the information potential. By using the information potential, 

the proposed algorithm can be tightly related to the entire 

family of fuzzy classifiers, as well as to the evolving eClass 

classifiers [2], [7]. 

An important property of the previously introduced average 

square distance and information potential is that it is possibly 

to compute them recursively. In other words, any classification 

algorithm which is based on them can be implemented in real 

time. This is shown by the following two theorems. The 

following conventions be adopted in the proof: 

( , , ) ( )P Pk kλ ≡z zZ , ( , , ) ( )S Sk kλ ≡z zZ . 

Theorem 1. Let ( , , ) ( )S S Sk k k k kλ ≡ ≡z zZ  be defined by 

(4), and let the norm be defined as in (5). The following 

recursion holds 
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Proof. The key point is to note that 
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By means of the above expression, it is readily obtained that 
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the recursive expressions (6), (8) and (10) are obtained using 

simple algebraic manipulations.  

Theorem 2. Let * *( , , ) ( )S Si ik kλ ≡z zZ  be defined by (4), and 

let the norm be defined by (5). Then 

* * *( ) (1 ) || || ( )1S Si i ik k kλ λ= − − + −z z z z . (12) 

Proof. By definition, 
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The recursive form is obtained by extracting the most recent 

term in the sum 
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which is equivalent to (12). 

The two theorems above testify that it is possible to 

implement a recursive clustering procedure based on an 

arbitrary potential function provided it depends solely on the 

exponentially windowed mean square distance (4). The 

Theorem 1 shows how to compute the potential of the new 

feature vector, while the Theorem 2 shows how to recursively 

update the potential of the cluster centers. 

III. GENERAL STRUCTURE OF THE PROPOSED ADAPTIVE 

CLUSTERING ALGORITHM 

The information potential defined in the previous section 

reflects a measure of similarity between the current and recent 

process behavior. If the information potential of the feature 

point associated with the current process behavior is high, then 

there has not been any sudden change in the process behavior. 

If, however, the potential of the current feature is low, then the 

abrupt change in process behavior is likely to have happened 

in recent past. 

The algorithm itself keeps track of a certain number of data 

points (features) which previously had high values of the 

information potential. These features will be referred to as 

focal points or foci, and sometimes also as nodes. Each node 

is, in fact, a feature vector found to be the most representative 

for certain area of the feature space (and thus for certain 

working condition in the FDI setting). The set of all nodes 

defines the underlying knowledge base of the algorithm.  

Information potential is computed recursively for each of 

the existing nodes using Theorem 2. The active node (active 

focus) is the one with the highest value of the information 

potential. The estimated current working condition is the 
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condition associated with the active node. Thus, the 

classification is performed in a winner-takes-all manner. 

In order to provide adaptability the information potential is 

also computed for the most recently observed feature point 

(the current feature). If this information potential is high, 

higher than the potential of any of the existing feature points, 

the current feature vector is more representative of the current 

working regime than any of the focal points present: the 

knowledge base of the algorithm should be modified. The 

modifications can be twofold. If some of the previously seen 

clusters changed slightly, or if a better representative of an 

existing cluster is found, the position of some focal points 

changes, but the knowledge base remain of the same size. If, 

however, a new cluster (potentially, a new working condition) 

is found, the knowledge base grows. More precisely, if the 

current working condition is similar to some of the existing 

nodes, the existing node is replaced by the current feature 

vector. If, on the other hand, the current feature is far from any 

of the existing nodes, the current feature is proclaimed as the 

new focal point and the underlying data structure of the 

algorithm grows. The pseudo-code of the algorithm is 

presented in Listing 1. 

The algorithm may be initialized on the basis of a priori 

knowledge. In this case, the initial nodes are selected as the 

expected positions of typical cluster centers in the feature 

space. In the FDI setting, the initial nodes should be selected 

so to correspond to nominal working conditions and also to the 

typical faults. If, however, a priori knowledge is not available, 

the algorithm may be left uninitialized. In such a case, the first 

feature vector is selected as the initial node. 

 

Listing 1. Pseudo-code of the proposed adaptive clustering 

procedure. 

1. Choose an appropriate feature generator. 

2. Choose algorithm parameters. 

3. Initiate the knowledge base 

4.    BEGIN LOOPBEGIN LOOPBEGIN LOOPBEGIN LOOP    

 5. Obtain current feature vector 

 6. Compute, on the basis of Theorem 1, the information    

  potential of the current feature vector.  

 7. Compute, on the basis of Theorem 2, the information   

  potential of the existing nodes.  

 8. IFIFIFIF the information potential of the current feature    

  vector is higher than the information potential of all   

  existing nodes THENTHENTHENTHEN 

  9. IFIFIFIF the current feature vector is close to some of the  

   existing nodes THENTHENTHENTHEN 

   10. Modify the knowledge base: replace the closest   

      existing node with the current feature vector 

  11. ELSEELSEELSEELSE    

   12. Extend the knowledge base: create a new node  

      equal to the current feature vector. 

  END IFEND IFEND IFEND IF    

 END IFEND IFEND IFEND IF    

END LOOPEND LOOPEND LOOPEND LOOP        

 

In any time instant, the number of working conditions the 

algorithm may identify is equal to the number of nodes. Each 

node is representative for a set of feature values, i.e. each node 

is representative for a specific working condition of the 

underlying process. 

The proposed algorithm, or better say its knowledge base, 

may be seen as an self-adaptive artificial neural network 

(ANN) with structure presented in Fig. 1. The hidden layer of 

the network contains the nodes of the algorithm. Once a new 

measurement is available, the existing nodes are compared to 

it, similar as with the radial basis function neural networks 

(RBF-NN). The difference is that the information potential is 

used as the basis for comparison, not the algebraic distance. 

The advantage of using the information potential is in the 

considerable robustness to noise and outliers [7]. Apart from 

that, the neural network is constantly being trained, both in the 

terms of its parameters (positions of the nodes in the hidden 

layer) as well as in terms of its structure, since the number of 

nodes is growing. 

 

 
Fig. 1.  The general, network-like structure of the knowledge base. 

IV. SPECIALIZATION OF THE PROPOSED ALGORITHM FOR FDI  

When applying the proposed adaptive clustering procedure 

in the field of fault detection it is important to select a feature 

generator properly. A feature generator is an algorithm, or a 

device, which extracts features from process measurements. In 

this paper, we consider faults which change the dynamic 

behavior of the process under consideration. Thus, it is natural 

to choose a Kalman filter [12] as a feature generator. Once the 

dynamic behavior of the process changes, so will the estimated 

values of its model parameters. 

The proposed adaptive classification algorithms will search 

for the points in the parameter space which are most 

representative for current working regimes. If the underlying 

process is nonlinear, which is usually the case, a single 

working conditions may be described by multiple linear 

models, i.e. by several focal points in the feature space.  

It is impossible for the detection algorithm to automatically 

detect that several focal points are in fact related to the same 

working condition. This should be done by an experienced 

operator. The operator should also be responsible for 

accurately describing each of the focal points, or at least as 

labeling them as nominal or faulty. Even more, a detailed 

description may be assigned to each of the recognized working 

conditions. In the case of faulty working regimes, the assigned 

description may even contain a prescription of actions needed 

to either fix the faulty conditions or minimize its impact. Thus, 

the proposed algorithm is most effective when suitably 

combined with expert knowledge. The overall structure of the 

proposed fault diagnosis system is presented in Fig. 2. 

  

  

  Σ
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Fig. 2.  The general structure of the proposed adaptive FDI scheme. 
 

V. EXPERIMENTAL VERIFICATION 

Consider the pneumatic experimental setup presented in 

Fig. 3. The air flow is actuated by means of a pneumatic servo-

valve (PV), which is controlled by means of a standard current 

signal via current/pressure converter (IPC). The pressure is 

measured by means of a pressure meter (PM) and a pressure 

transmitter (PT). Behind the setup presented in Fig. 3. there is 

an air tank. The tank can be opened (connected to the rest of 

the pneumatic setup) or closed by means of a manual on/off 

valve (MV). Output valves (OV), simulating air consumers, 

are also manual. 

The following experiment has been conducted. The two 

working conditions of the experimental setup are: 

1. the air tank is opened (O); 

2. the air tank is closed (C). 

 

 
Fig. 3.  The pneumatic experimental setup. 

 

Initially, the knowledge base of the algorithm has been kept 

empty: the clustering procedure is unaware of both working 

conditions. The state of the system is changed in the manner 

presented in Table I. The process model is assumed in the 

form 

y[k] = - a y[k-1] - b y[k-2] + c u[k-1] + d u[k-2], (13) 

where a, b, c and d are the parameters obtained by means of 

the Kalman filter, y is the pressure signal and u is the servo-

valve command signal. The forgetting factor of the Kalman 

filter was selected as 0.99. Both the system order and the 

forgetting factor have been selected empirically. The value of 

forgetting factor provided a good trade-off between detection 

speed and robustness to measurement noise. 

Even if the process is in a fixed working regime, some time 

is needed for the outputs of the Kalman filter to settle to their 

steady-state values. During this transient, the outputs of the 

Kalman filter are not relevant for the actual process behavior, 

but are primarily influenced by the internal dynamics of the 

Kalman filter itself. Thus it is preferable for the clustering 

procedure to ignore a certain amount of data initially received 

from the feature generator. In the current experiment the first 

1000 samples coming from the Kalman filter are discarded, 

and the adaptive classification is effectively initiated with 1000 

samples delay with respect to the feature generation process.  

The λ  parameter of the proposed adaptive classification 

scheme is chosen to be 0.99, the same as the forgetting factor 

of the Kalman filter. New focal points were introduced if the 

distance between the candidate focus (current feature vector 

with high value of the information potential) and the closest 

existing focal point is greater than 0.25. 

Input and output data, i.e. valve command and pressure 

value, measured during the experiment are presented in Fig. 4. 

The algorithm has been implemented on a National 

Instruments cRIO (Compact RIO) real time controller. The 

sampling rate was 0.1 sec. It is noticeable from the figures that 

the dynamics of the system with opened air tank is 

considerably slower comparing to the dynamics of the system 

with air tank closed. The difference in the dynamic behavior is 

also clearly noticeable in the outputs of the Kalman filter, 

presented in Fig. 5. The final results of adaptive classification 

are presented in Fig. 6. The parameters of each particular focal 

point (node) found by the adaptive classifier are presented in 

Table II. 

TABLE I 

THE SCHEDULE OF WORKING REGIMES IN THE EXPERIMENT 

Start Time 

(sec) 

Stop Time 

(sec) 

Duration 

(sec) 

Working 

Regime 

0 325 (5 min 

25 sec) 

325 (5 min 

25 sec) 

TANK 

CLOSED 

325 (5 min 

25 sec) 

460 (7 min 

40 sec) 

135 (2 min 

15 sec) 

TANK 

OPENED 

460 (7 min 

40 sec) 

555 (9 min 

15 sec) 

95 (1 min 

35 sec) 

TANK 

CLOSED 

555 (9 min 

15 sec) 

660 (11 

min 00 sec) 

105 (1 min 

45 sec) 

TANK 

OPENED 

660 (11 min 

00 sec) 

875 (14 

min 35 sec) 

225 (3 min 

45 sec) 

TANK 

CLOSED 

875 (14 min 

35 sec) 

1003 (16 

min 43 sec) 

128 (2 min 

8 sec) 

TANK 

OPENED 
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Fig. 4.  Input and output data collected during the experimental run. Vertical dashed lines denote instants when the working condition has been changed. Letter 

above the figure denote the state of the air tank: O – opened, C – closed. The time axis shows sample indices (multiples of 100ms) from the beginning of the 

experiment. Vertical lines denote approximate boundaries between working conditions. 

 

 
Fig. 5.  Estimated values of the parameters of the second-order process model, i.e. the outputs of the Kalman filter. The time axis shows sample indices 

(multiples of 100ms) from the beginning of the experiment. Vertical lines denote approximate boundaries between working conditions. Upper labels denote the 

active working conditions: C denotes that the air tank is closed, O denotes that the air tank is opened.  

TABLE II 

LINEAR MODELS OBTAINED BY THE PROPOSED ADAPTIVE CLUSTERING PROCEDURE 

Model No. a b C D Associated state 

1 0 0 0 0 INITIAL 

2 -1.1088 0.1203 -0.0588 0.0644 TRANSIENT 

3 -1.795 0.6788 -0.0487 0.0465 TANK CLOSED 

4 -1.3836 0.3834 -0.03973 0.0388 TANK CLOSED 

5 -1.8992 0.9009 -0.0479 0.0479 TANK CLOSED 

6 -3.9408 2.9310 -0.0667 0.0670 TRANSIENT 

7 -2.7386 1.7312 -0.0009 0.0003 TRANSIENT 

8 -0.5470 -0.4672 -0.0004 -0.0025 TANK OPENED 

9 -0.8566 -0.1449 -0.0072 0.0036 TANK OPENED 
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Fig. 6.  The output of the proposed adaptive classification algorithm. Lower line denotes the index of the active focal point, while the upper line denotes the total 

number of focal points. Arrows on the left denote the focus indices corresponding to each particular working condition.The time axis shows sample indices 

(multiples of 100 ms). 

 

The initial state is the one with all parameter values equal 

to zero. These are the initial parameters provided by the 

Kalman filter and it is taken as the first focus since the 

knowledge base is initially empty. Foci indexed 3, 4 and 5 may 

be associated with the working condition when the air tank is 

closed (disconnected from the rest of the system). Foci 

indexed with 8 and 9 may be associated with the working 

condition which is active when the air tank is opened. Multiple 

focal point are associated with single working condition due to 

the nonlinearity of the process. The association of working 

conditions and focal points cannot be made automatically; it 

should be made by an experienced operator the first time any 

of the focal points is detected. In this particular case, it is made 

after the experimental run, by observing the correlation 

between the actual working condition and the index of the 

active focus. However, once the association is created, it can 

be used for automatic fault detection, since during further 

occurrences of the same fault (or in general, of the same 

working condition) the regime description will remain 

available. 

I. CONCLUSION 

An adaptive classification procedure with emphasis to 

applications in fault detection and isolation has been presented 

in the current paper. The key underlying concept is the notion 

of the information potential (3) defined by means of 

exponentially weighted average distance of the current feature 

point with respect to the set of all previously seen features. 

The information potential defined in such way allows for 

recursive computations and thus, real-time, on-line 

implementation. 

The fault detection algorithm based on the presented 

adaptive clustering procedure is capable of detecting novelties 

and to evolve in accordance to changes in the plant under 

consideration. However, the detection speed, especially when 

the measurement noise is high, may be low. For the example 

presented in this paper the detection delay is 30 seconds in 

average. For some processes and in certain applications this is 

acceptable. However, in a number of industrial settings such a 

delay is too high. In such cases, one can use standard observer 

based detection schemes [11] and sacrifice novelty detection 

for speed. A hybrid approaches, which would combine the 

proposed algorithm with observer based strategies, would be 

particularly interesting and is a subject of further line of 

research. 
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