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Abstract—One of the most attractive experimental methods for 

measuring the forces starting in the subnano range is photonic 

force microscopy (PFM). A proper use of the PFM is based on 

tracking movements of test particles in a given environment that 

is essentially Brownian. Brownian motion of test particles can be 

used for calibration and for determination of viscoelastic 

parameters of the environment. Our goal is to determine the two-

dimensional mean square displacement (MSD) of a spherical 

silica particle in water which is subject to random thermal forces. 

The problem is modeled and simulated in commercial software 

package ANSYS 12.1-Mechanical APDL. 

 
Index Terms—Brownian motion, finite element method 

modeling, optical tweezers, particle tracking, photonic force 

microscopy. 

 

I. INTRODUCTION 

HE Atomic Force Microscope (AFM) was considered to 

be the ideal tool for physical studies of live biological 

specimens. However, the rough surface of a cell often prevents 

the tip of a mechanical cantilever from following the fine 

topographic details. Furthermore, forces of several tens of 

piconewtons can deform soft cellular structures, such as the 

plasma membrane. Therefore, a scanning probe microscope 

without a mechanical contact, which works with extremely 

small loading forces, is desirable. Such an instrument, the 

Photonic Force Microscope (PFM), has been developed at the 

European Molecular Biology Laboratory (EMBL) in 

Heidelberg ten years ago [1]. This three-dimensional scanning 

probe technique is based on optical tweezers (OT), scientific 

manipulation technique that uses a highly focused laser beam 

to provide an attractive or repulsive force to physically hold 

and move small objects [2].  Small objects like nano-particles, 

living cells, bacteria and viruses in physiological solution can 

be manipulated and positioned in 3D with a precision of a few
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nanometers [3]. Compared with AFM techniques, the 

mechanical cantilever of the AFM is replaced with optical 

tweezers and the cantilever tip by a trapped bead.  The optical 

forces generated by an OT are typically in the piconewton 

range, making it an ideal tool for studying the mechanics of 

individual molecules. In the same time, an optically trapped 

dielectric particle acts as a probe, which, driven by thermal 

noise (Brownian motion), scans its local environment in a 

volume determined by the optical trap. In that way, the 

viscoelastic parameters of the environment can be obtained. 

This approach, called microrheology, typically measures the 

mean square displacement (MSD) of the Brownian particle. 

The optical trap is taken to be a potential well with a stiffness 

k, controlled by the power of a laser beam. The proper use of 

PFM (precisely, the proper interpretation of experimental 

results) needs a calibrated optical trap, that is, a precisely 

defined stiffness constant k. There are several ways to do this, 

and all of them involve the observation of the bead’s Brownian 

motion, while it is in the trap’s potential well [4]. Those are 

the reasons why it is so important to know the parameters of 

the Brownian particle’s trajectory. The main problem in 

Brownian movement monitoring is that due to the small 

trapping force constants, thermal position fluctuations of the 

probe are relatively large in comparison to the thermal motion 

of an AFM cantilever. So, the three-dimensional position of 

the bead must be measured with a spatial and temporal 

resolutions in the nanometre and microsecond range, 

respectively.  

The Brownian motion is an erratic-type motion, carried out 

by a particle immersed in a fluid under the effect of the 

collisions it undergoes with the molecules of the fluid. The 

origin of the random motion was first successfully explained 

by Einstein as the amplification of the statistical fluctuations of 

the surrounding fluid molecules. Since then, the theory of 

Brownian motion has found broad applications in the 

description of phenomena in many fields in science and even 

in financial models. Due to the fractal nature of a diffusive 

Brownian particle's trajectory, the length of the path traveled 

in a given time interval is unknown. Therefore, the particle's 

velocity is ill-defined, leading to confusion in early attempts to 

connect the particle's apparent velocity to the temperature as 

demanded by the equipartition theorem [5]. The mean square 
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displacement (MSD), on the other hand, can be measured and 

it was shown by Einstein to increase linearly with time t: 

〈 [x(t)]
2 
〉 = 2dDt, where 〈 [x(t)]

2
 〉 is the mean square 

displacement (MSD) in one dimension of a free Brownian 

particle during time t, d is dimensionality, and D is the 

diffusion constant. The diffusion constant can be calculated by 

D= kBT/γ , where kB is Boltzmann’s constant, T is the 

temperature, and γ is the Stokes viscous drag (friction) 

coefficient. 

This stochastic description of the interactions of the particle 

with the surrounding fluid must break down at short 

timescales, where the particle's inertia becomes significant.  In 

the inertia-dominated regime, termed ballistic, the particle's 

autocorrelation function has a peak. Loosely speaking, after 

receiving an impulse from the surrounding fluid molecules, the 

particle flies in a straight line with constant velocity before 

collisions with fluid molecules slow it down and randomize its 

motion. 

In the ballistic regime the MSD approaches (kBT/m)t
2
 below  

the momentum relaxation time of a particle with mass m, 

τp=m/γ.  Because of the lower viscosity of gas, compared with 

liquid, the τp of a particle in air is much larger. This lowers the 

technical demand for both temporal and spatial resolution for 

measurements in a gas environment. The main difficulty of 

performing high-precision measurements of a Brownian 

particle in air, however, is that the particle will fall under the 

influence of gravity. This problem could be overcome by using 

optical tweezers to simultaneously trap and monitor a silica 

bead in air and vacuum, allowing long-duration, ultra-high-

resolution measurements of its motion. Some recent 

simulations as well as experiments showed that, even for 

timescales much larger than τp, there are deviations from 

random diffusive behavior, originating from the inertia of the 

surrounding fluid, which leads to long-lived vortices caused by 

and in turn affecting the particle's motion [6]. These 

hydrodynamic memory effects introduce an intermediate 

regime between the purely ballistic ∼t
2
 and the diffusive ∼2Dt 

scaling, where the MSD takes on a rather complicated form. 

In addition, the correct hydrodynamic treatment modifies 

the MSD in the ballistic regime to (kBT/m*)t
2
, where m* is an 

effective mass given by the sum of the mass of the particle and 

half the mass of the displaced fluid. 

The equation that the successfully describes the probe 

motion over entire time domain is the classical phenome-

nological Langevin’ equation. For the sake of simplicity, the 

one-dimensional Langevin equation is discussed: 

)()(
2

2

tFexttF
dt

dx

dt

xd
m ++++++++−−−−==== γγγγ

                 (1) 

We associate a coordinate x with the Brownian particle's 

position. Two forces, both characterizing the effect of the 

fluid, act on the particle of mass m: a viscous friction force –

γ(dx/dt), characterized by the friction coefficient γ> 0, and a 

fluctuating force F(t), representing the uncreasing impacts of 

the fluid molecules on the particle. The fluctuating force is 

considered to be an external force, and is called the Langevin 

force. In the absence of a potential, the Brownian particle is 

said to be `free'. In the Langevin model, the friction force γv 

and the fluctuating force F(t) represent two consequences of 

the same physical phenomenon (namely, the collisions of the 

Brownian particle with the fluid's molecules). To fully define 

the model, it is necessary to characterize the statistical 

properties of the random force.  

We assume that the average value of the Langevin force 

vanishes, < F(t) > = 0. The autocorrelation function of the 

random force, g(τ) = < F(t)F(t + τ) > is an even function of τ, 

decreasing over a correlation time. The correlation time is of 

the order of the mean time interval separating two successive 

collisions of the fluid's molecules on the Brownian particle. If 

this time is much shorter than the other characteristic times, 

such as for instance the relaxation time, we can represent g(τ) 

as a delta function. Most often, it is also assumed, for 

convenience, that F(t) is a Gaussian process (normal 

distribution). All the statistical properties of the Langevin 

force are then calculable if only its average and its 

autocorrelation function are given. 

Let us assume that an external force is applied to the 

particle. This force Fext(t) adds to the random force F(t). In 

the case of OT, Fext(t) = k x(t), this means that the restoring 

force of the optical trap is proportional to the bead 

displacement from its equilibrium position, the bottom of the 

trap’s potential well. 

An analytical solution for the one-dimensional Langevin’ 

equation is known. However, the two(three)dimensional 

problem is too complex to be analytically solved. Therefore, 

we present a finite element (FE)-based simulation as a suitable 

tool for determining values of the parameters that can be 

compared with the values extracted from the experimental 

results on PFM. 

II. SIMULATION PROCEDURE  

The finite element model of the problem is given in Fig. 1. 

According to Maxwell fluid model, the viscoelastic material is 

represented by a purely viscous damper and a purely elastic 

spring connected in series [7]. Water is pure viscous fluid. 

Because of that, it is modeled by a dashpot connected with the 

particle at the one end, and with constrained translational 

degree of freedom (DOF) at the other end. For symmetric 

dashpots along the global X and Y directions, COMBIN14 [8] 

elements are used. COMBIN14 has longitudinal and/or 

torsional capabilities in one, two, and three dimensional 

applications. The element is defined by two nodes, a spring 

constant (k) and damping coefficients (cv)1 and (cv)2, where the 

damping coefficient cv is given by cv = (cv)1 + (cv)2v (v is the 

fluid velocity). In these simulations, we used the linear 

coefficient (cv)l, only. It is equal to the friction coefficient γ 

given by Stokes’ law (for the small spherical bead): γ = 6πνR, 

and depends on the shear viscosity ν of the fluid and the 

particle radius R. The translational displacements along X and 

Y, at the damper ends, are constrained (X and Y displacements 
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are zero, green triangles on the Fig. 1).  

A thermal force load is applied in the center of the bead. To 

obtain X and Y components of the thermal force, FX and FY, 

that satisfy the conditions for fluctuating random force, the 

Latin Hypercube Sampling method from multivariate normal 

distribution is used (Matlab Statistics toolbox [9]). The size 

(N) of the generated 2 column matrix sample (FX, FY) was 

selected in such a way that corresponds to the length of time 

interval in which the simulation should be performed.  

 

 

 

Fig. 1.  Illustration of the simulated system. The viscous fluid is represented 

by a dashpot connected with the particle at the one end, and with constrained 

translational DOF at the other end. The optical trap is also symbolized by a 

harmonic spring. 

 

For example: time range 10ns-1ms is divided in 100,000 

data points with time step (collision time) of 10 ns. For 

simplicity, in Fig. 2(a) the X component of the generated 

thermal force is shown, only, whereas in Fig. 2(b), the FX 

autocorrelation and FX(FY) cross-correlation sequences 

(length 2N-1) are shown. It is obvious that autocorrelation and 

cross-correlation functions of generated thermal force 

components are delta and zero functions, respectively. The 

harmonic potential of optical trap generated by OT is 

characterized by elastic (spring) constant k. A two-node 

element, COMBIN14 with elastic capabilities (spring constant 

defined) is used for modeling optical trap. In the case of 

symmetric (spatial homogeneity) optical trap, spring constants 

in both X and Y directions are the same (kx=ky). The strength 

of optical trap depends on the spring constant value. 

In Table I, the values of material and geometry parameter 

used in simulation are given. 

A structural transient analysis is performed with multiple 

load steps using DO loop. Time step and number of steps had 

to be selected to meet the available computer resources. The 

maximum number of steps is limited to 100,000. Depending 

on the tim]e range, for the collision time, values of 10, 50 or 

100 ns were chosen (time ranges: 10 ns – 1 ms, 50 ns – 5 ms, 

and 0.1 µs – 10 ms). As the results of simulations, the 

displacements in both X and Y directions are obtained.  

As an example, in Fig. 3 the displacements in both 

directions (X and Y) for “free” 0.5 µm silica particle in water 

under thermal fluctuating force, are given.  

FX 

 

FY 

η 

kx, ky, kz 

(a) 

(b) 

 

Fig. 2.  (a) The FX component of random thermal force. FX is Nx1 array 

(N=100,000), generated by Latin Hypercube Sampling method (Matlab 

Statistics toolbox), (b) The autocorrelation and cross-correlation sequences 

of FX(FY) thermal force component given in Figure 2a). The cross-

correlation can be neglected compared to autocorrelation delta peak.  

TABLE I 

THE VALUES OF MATERIAL AND GEOMETRY PARAMETER USED IN 

SIMULATION 

Material Properties Geometry Properties 

 
silica bead: 

EY=70GPa 

Poisson ratio=0.2 

ρ=2000kg/m3 

fluid: 

dynamic viscosity 

ν=10-3Pa*s 

optical trap: 

spring constant 

 kx=350 µN/m 

(ky=100 µN/m) 

 

silica bead: 
 

r=0.5 µm 

 

Ldash-pot=15 µm 

Ltrap=20 µm 
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Fig. 3.  The results of two dimensional finite element based simulation of 

Brownian motion of “free” 0.5 µm silica bead in water, under thermal 

fluctuating force, whose X component (FX) is given in Fig. 2(a). The term 

“free” means that bead is not optically trapped.  

 

 

Based on the displacement values, the bead trajectories, as 

well as the Mean Square Displacements (MSD) are calculated.  

 

MSD(τ)=<∆r(τ)2> = <[r(t+τ) - r(t)]2> 

where r(t) is the position of the particle at time t, and τ is the 

lag time between the two positions. The average <...> 

designates a time-average over τ.  

 

III. RESULTS AND DISCUSION 

The simulations under different load conditions are 

performed: 

• Thermal fluctuation of the silica bead in water – without 

optical trap 

• Thermal fluctuation of the silica bead in water – with a 

symmetric optical trap 

• Thermal fluctuation of the silica bead in water – with an 

asymmetric optical trap 

 

From Brownian trajectories of both “free” silica bead and 

silica bead trapped by OT, given in Fig. 4 it is obvious that 

volume exploited by bead is determined by strength of the 

optical trap. Optical trap is homogeneous,  kx=ky. 

 

 
 
Fig.  4.  Two-dimensional trajectories of  a 0.5 µm “free”  (gray line, top and 

left) and “trapped” (red line, right) silica bead in water under thermal load 

force. The spring constants of optical trap in both directions are the same, 

kx=ky (symmetric optical trap). 

 

Fig. 5(a) shows MSD of “free” bead as a function of time 

over four decades. Two regimes of the particle motion can be 

observed, ballistic (t<0.1 µs) and diffusive at t>0.1 µs. The 

slope of the simulated MSD curve at short time scale is double 

that of the MSD curve at long scale in the log-log plot. At very 

short time scale, MSD is predicted to be proportional to 

 (ballistic regime). m* is an effective mass, by which 

the  hydrodynamic memory effect can be modeled. At the long 

time scale the MSD increases linearly in time (diffusive 

regime). Fig. 5(b) displays in more details the Brownian 

motion at long-time scale in linear-linear plot. The simulated 

curve is fitted with a linear equation (y=a+b*x), and the value 

of slope b, 1.9134 is obtained. From the slope value, the value 

of diffusivity D of 4.78 µm
2
/s is calculated. That is the 

accepted value for the viscosity of water at room temperature 

(Table II). MSD versus t, at short time-scale is shown in detail 

in Fig. 5(c)). This curve is fitted with an Allometric2 equation 

(y=a+b*x
c
). In the script box the values of the equation 

parameters are given (c=1.963, b=3.47E6 µm
2
/s

2
). The value 

of m* can be estimated based on the value of parameter b. The 

value of parameter c, obtained by fitting  confirms the 

quadratic dependence MSD(t).   

The influence of optical trap symmetry on the Brownian 

trajectory of 0.5 µm silica bead in water is shown in Fig. 6. 

These trajectories are simulated over five orders of magnitude 

in timescale from 50 ns to 5ms (time of correlation is 50 ns). 
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Fig. 5(a).  The MSD of a 0.5 µm silica sphere in water. At long time plot 

(t > τp~0.1µs) the slope of MSD is ~1 in log-log scale (diffusive regime), 

while at short time scale (t < τp) the slope of MSD is ~2 in log-log plot 

(ballistic regime). 

 
 

Fig. 5(b).  The MSD of a 0.5 µm 

silica sphere in water at short time-

scale given in details. <∆r2> is fitted 

with Allometric2 curve a+b*tc, and 

the power c obtained by fitting is 

∼2, that is characteristic of ballistic 

motion.  

Fig. 5(c).  The MSDs of a 0.5 µm 

silica sphere in water at long time 

scale shown in details. <∆r2> is 

fitted with linear curve a+b*t, and 

the slope b obtained by fitting is ∼D, 

where D is the diffusion coefficient. 

 

 
Fig.  6.  Two-dimensional trajectories of a 0.5 µm silica bead in water under 

thermal load force, when bead is trapped by symmetric optical trap, 

kx=ky=350µN/m (--), and asymmetric optical trap, kx=350µN/m, 

ky=100µN/m (--). 

 
Fig. 7.  The MSD of a 0.5 µm trapped silica sphere in water: (--) symmetric 

(kx=ky), (--) asymmetric optical trap. After time τk, the MSD reaches the 

plateau. The value of plateau depends on the spring constant of the trap. 

  

The Fig. 7 shows that MSD in the case of optically trapped 

bead increase and then reach the plateau determined by optical 

trap strength. In the case of symmetrically trapped bead, the 

MSD reaches the plateau around τk =0.05 ms (the predicted 

value of τk is 0.03 ms, Table II). The values of MSD on the 

plateau is about 2.2E-05 µm
2
, that is in good agreement with 

theoretically predicted value  (Table II), where k is the 

spring constant of the optical trap. In the case of asymmetric 

optical trap (kx=350 µN/m, ky=100 µN/m), x-position MSD 

reaches plateau around 0.05 ms, while y-position MSD (and 

therefore <∆r
2
>) continues to grow (Fig. 7).  

IV. CONCLUSION 

We used a very simple Maxwell model to investigate the 

influence of the different parameter of the model (geometry, 

material properties..) on the Brownian motion of a silica bead 

TABLE II 

COMPARISON OF THE VALUES OF PARAMETERS THAT CHARACTERIZE THE 

BROWNIAN MOVEMENT OF BEAD IN WATER, UNDER TERMAL FLUCTUATION  

Parameter 

Value obtained 

by theoretical 

prediction 

Value 

calculated from 

the results of 

simulations 

γ
=τ

m
p  0.1 µs 0.08 µs 

k
k

γ
=τ  0.027 ms 0.03 ms 

Diffusion coefficient 

γ
=

Tk
D B  

 

0.446 µm2/s 

 

 

0.478 µm2/s 

 

MSD plateau (in the 

case of trapped bead) 

k

TkB2
 

2.36E-5 µm2 

(k=350 µN/m) 

8.28E-5 µm2 

(k=100 µN/m) 

2.2E-5 µm2 

(k=350 µN/m) 

8E-5 µm2 

(k=100 µN/m) 
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in water under thermal fluctuating force. The parameters we 

can change are: the spring constants of optical trap, the bead 

radius, and the fluid viscosity. From Table II, it is obvious that 

the results of simulations are in good agreement with the 

theoretical predictions. The main advantage of the FE based 

modeling and simulation is that it can consider two(three) 

dimensional problem for which there is no analytical solution. 

An analytical solution is almost impossible to find, because the 

interaction of variables is not known. By changing the values 

of parameters in the simulation, and comparing the results with 

the experimental ones, the value of fluid dynamic viscosity can 

be obtained, if the radius of the probe, and temperature are 

known. Also, the FE based simulation allows to specify how 

the variables change with temperature, frequency... In this way 

it is possible to make conditions close to real experimental 

conditions. The main disadvantage of this simple model is that 

viscous fluid can be modeled as a  dashpot with friction 

coefficient γ, in the case of small spherical particle only 

(Stokes law). If we have a probe of some other geometry, one 

of the more complicated modeling approaches must be used: 

solid modeling – where the surrounding medium is meshed 

with a finite element that supports the viscoelastic properties 

of materials given in terms of Prony series, or FLOTRAN 

analysis with Arbitrary Lagrangian – Eulerian (ALE) 

formulation for moving domains. By using some of these 

approaches, the influence of surrounding fluid would be more 

accurately included in the simulation. However, these 

approaches make the problem very complex, because besides 

the load force that is complex enough, we introduce a very 

complex model of the surrounding fluid. In such a way, the 

simulations became very demanding.  The authors’ intention is 

to continue work in these directions. 
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