
ELECTRONICS, VOL. 15, NO. 2, DECEMBER 2011

73

Abstract—In this paper the realization of one algorithm for

digital signature, DSA (Digital Signature Algorithm), is

presented. In the algorithm, for calculating the variables needed

to generate public and private key, one-way hash function, SHA

(Secure Hash Algorithm), is used. A method of realization of SHA

and DSA is presented, and the time required to digitally sign

messages of different sizes and time required to generate the keys

are measured. The results are compared with the analogous result

based on another software implemented system for digitally

signing with hash function and RSA algorithm.

Index Terms—Digital signature, hash function, public key

encryption algorithms, software implementation.

I. INTRODUCTION

UBLIC-KEY algorithms (also called asymmetric

algorithms) are designed so that the key used for

encryption is different from the key used for decryption.

Furthermore, the decryption key cannot (at least in any

reasonable amount of time) be calculated from the encryption

key [5, 6]. The algorithms are called “public-key” because the

encryption key can be made public: A complete stranger can

use the encryption key to encrypt a message, but only a

specific person with the corresponding decryption key can

decrypt the message. In these systems, the encryption key is

often called the public key, and the decryption key is often

called the private key. Sometimes, messages will be encrypted

with the private key and decrypted with the public key; that

protects the integrity of the sender (authenticity of the

message). This is used in digital signatures.

A one-way hash function, often called compression

function, message digest, fingerprint, cryptographic checksum,

is central to modern cryptography. One-way hash functions are

another building block for many protocols. Hash functions

have been used in computer science for a long time. A hash

Ministry of Science and Technological Development of the Republic of

Serbia has partially funded project TR32007 “Multiservice optical transport

platform OTN10/40/100 Gbps with DWDM/ROADM and Carrier Ethernet

functionalities.” Part of results in this paper was presented at the 55th

ETRAN conference, Banja Vrućica, 6-9. June 2011.

B. R. Pajčin is with the IRITEL A.D., Belgrade, Serbia (phone: 00 381 11

3073 451; fax: 00 381 3073 434; e-mail: bojan@iritel.com).

P. N. Ivaniš, is with Faculty of Electrical Engineering, University of

Belgrade, Belgrade, Serbia (e-mail: predrag.ivanis@etf.rs).

function is a function, mathematical or otherwise, that takes a

variable-length input string (called a pre-image) and converts

it to a fixed-length (generally smaller) output string (called a

hash value) [5]. A simple hash function would be a function

that takes pre-image and returns a byte consisting of the XOR

of all the input bytes. A one-way hash function is a hash

function that works in one direction: It is easy to compute a

hash value from pre-image, but it is hard to generate a pre-

image that hashes to a particular value [5]. The hash function

previously mentioned is not one-way: Given a particular byte

value, it is trivial to generate a string of bytes whose XOR is

that value. A good one-way hash function is also collision-

free: It is hard to generate two pre-images with the same hash

value. The hash function is public; there’s no secrecy to the

process. The security of a one-way hash function is its one-

wayness. The output is not dependent on the input in any

discernible way. A single bit change in the pre-image changes,

on the average, half of the bits in the hash value. Given a hash

value, it is computationally unfeasible to find a pre-image that

hashes to that value.

The purpose of digital signature is to confirm the

authenticity of the message content (proof that the message has

not changed on the way between sender and recipient) and to

ensure a guarantee of the sender identity. Base of digital

signature is the contents of the message. Author (call him

person A) using a certain cryptographic algorithms, firstly

creates a fixed length record of its arbitrary length message,

which fully reflects the content of the message (a hash value).

After that, he performs certain operations over this record,

using several other parameters and his secret key, and thus

generates a digital signature that is sent along with the

message. When the recipient (call him person B) receives a

message with a digital signature, using the sender's public key

(public key of person A) and the summary record of messages,

which makes himself, and applying of certain operations as a

result gets a number. Person B compares that number with the

number who has received in the form of digital signature and

thereby determines the authenticity of the message.

Considering that operations in the message summary (hash

value) use a secret key, nobody else can generate the digital

signature except the person who sending the message (the only

person A knows its secret key). This way, the recipient (person

B) knowing the sender's public key (A) is a sure that just got a

message from him, because the calculated value match only if

Analysis of Software Realized DSA Algorithm

for Digital Signature

Bojan R. Pajčin and Predrag N. Ivaniš

P

ELECTRONICS, VOL. 15, NO. 2, DECEMBER 2011

74

the sender's public key corresponding to his secret key, which

person A is used to generate a digital signatures.

In the next section will be presented the most frequently

used hash functions today, Secure Hash Algorithm (SHA) [7],

and briefly will be described its operation. It will be described

operation of DSA algorithm [2], public key algorithm, which

is part of the DSS standard. The above-mentioned hash

function and DSA are software implemented and integrated in

the system to digitally sign, and that system is the subject of

this paper.

II. SHA

NIST (National Institute of Standards and Technology),

along with the NSA (National Security Agency), designed the

Secure Hash Algorithm (SHA) for use with the Digital

Signature Standard (DSS). SHA produces a 160-bit hash.

First, the message is padded so that its length is just 64 bits

short of being a multiple of 512. This padding is a single 1-bit

added to the end of the message, followed by as many zeros as

are required. Then, a 64-bit representation of the message’s

length (before padding bits were added) is appended to the

result. These two steps serve to make the message length an

exact multiple of 512 bits in length (required for the rest of the

algorithm), while ensuring that different messages will not

look the same after padding. After that, Five 32-bit variables

are initialized as follows:

A = 0x67452301,

B = 0xefcdab89,

C = 0x98badcfe

D = 0x10325476,

E = 0xc3d2e1f0

The main loop of the algorithm then begins. It processes the

message 512 bits at a time and continues for as many 512-bit

blocks as are in the message. First the five variables are copied

into different variables: a gets A, b gets B, c gets C, d gets D,

and e gets E. The main loop has four rounds of 20 operations

each. Each operation performs a nonlinear function on three of

a, b, c, d, and e, and then does shifting and adding. SHA’s set

of nonlinear functions is:

ft(X,Y,Z) = (X ∧ Y) ∨ ((¬ X) ∧ Z), for t = od 0 do 19

ft(X,Y,Z) = X ⊕ Y ⊕ Z, for t = od 20 do 39

ft(X,Y,Z) =(X ∧ Y) ∨ (X ∧ Z) ∨ (Z ∧ Y) , for t = od 40 do 59

ft(X,Y,Z) = X ⊕ Y ⊕ Z, for t = od 60 do 79

Four constants are used in the algorithm [7]:

Kt = 0x5a827999, for t = od 0 do 19

Kt = 0x6ed9eba1, for t = od 20 do 39

Kt = 0x8f1bbcdc, for t = od 40 do 59

Kt = 0xca62c1d6, for t = od 60 do 79

(If you wonder where those numbers came from:

0x5a827999 = 21/2 /4, 0x6ed9eba1 = 31/2 /4, 0x8f1bbcdc =

51/2 /4, and 0xca62c1d6 = 101/2 /4; all times 232.)

The message block is transformed from 16 32-bit words (M0

to M15) to 80 32-bit words (W0 to W79) using the following

algorithm:

Wt = Mt, for t = 0,1,…,15

Wt = (Wt-3 + Wt-8 + Wt-14 + Wt-16) <<< 1, for t = 16,17,…,79

If t is the operation number (from 0 to 79), Wt represents the

t-th sub-block of the expanded message, and <<< s represents

a left circular shift of s bits, then the main loop looks like [7]:

TEMP = (a <<< 5) + ft(b,c,d) + e + Wt + Kt

e = d,

d = c,

c = b <<< 30,

b = a,

a = TEMP

Fig. 1 shows one operation. After all of this, a, b, c, d, and e

are added to A, B, C, D, and E respectively, and the algorithm

continues with the next block of data. The final output is the

concatenation of A, B, C, D, and E

III. SECURITY OF SHA

There are two brute-force attacks against a one-way hash

function. The first is the most obvious: Given the hash of

message, H(M), an adversary would like to be able to create

another document, M´, such that H(M) = H(M´). The second

attack is more subtle: An adversary would like to find two

random messages, M, and M´, such that H(M) = H(M´). This is

called a collision, and it is a far easier attack than the first one.

The birthday paradox is a standard statistics problem. How

many people must be in a room for the chance to be greater

than even that one of them shares your birthday? The answer is

253. Now, how many people must there be for the chance to

be greater than even that at least two of them will share the

same birthday? The answer is surprisingly low: 23. With only

23 people in the room, there are still 253 different pairs of

people in the room.

Finding someone with a specific birthday is analogous to the

Fig. 1. Figure 1: One SHA operation.

ELECTRONICS, VOL. 15, NO. 2, DECEMBER 2011

75

first attack; finding two people with the same random birthday

is analogous to the second attack. The second attack is

commonly known as a birthday attack.

Assume that a one-way hash function is secure and the best

way to attack it is by using brute force. It produces an m-bit

output. Finding a message that hashes to a given hash value

would require hashing 2
m
 random messages. Finding two

messages that hash to the same value would only require

hashing 2
m/2

 random messages.

Hash functions of 64 bits are just too small to survive a

birthday attack. Most practical one-way hash functions

produce 128-bit hashes. This forces anyone attempting the

birthday attack to hash 2
64

 random documents to find two that

hash to the same value, not enough for lasting security. NIST,

in its Secure Hash Standard (SHS), uses a 160-bit hash value.

This makes the birthday attack even harder, requiring 2
80

random hashes.

SHA is very similar to MD4 [9], but has a 160-bit hash

value. The main changes are the addition of an expand

transformation and the addition of the previous step’s output

into the next step for a faster avalanche effect. Ron Rivest

made public the design decisions behind MD5 [10], but SHA’s

designers did not. Here are Rivest’s MD5 improvements to

MD4 and how they compare with SHA’s [6]:

1) “A fourth round has been added.” SHA does this, too.

However, in SHA the fourth round uses the same f

function as the second round.

2) “Each step now has a unique additive constant.” SHA

keeps the MD4 scheme where it reuses the constants for

each group of 20 rounds.

3) “The function G in round 2 was changed from ((X ∧ Y) ∨

(X ∧ Z) ∨ (Z ∧ Y)) to (X ∧ Z) ∨ (Y ∧ (¬ Z) to make G less

symmetric.” SHA uses the MD4 version: ((X ∧ Y) ∨ (X ∧

Z) ∨ (Z ∧ Y)).

4) “Each step now adds in the result of the previous step.

This promotes a faster avalanche effect.” This change has

been made in SHA as well. The difference in SHA is that

a fifth variable is added, and not b, c, or d, which is

already used in ft. This subtle change makes the den Boer-

Bosselaers attack against MD5 impossible against SHA.

5) “The order in which message sub-blocks are accessed in

rounds 2 and 3 is changed, to make these patterns less

alike.” SHA is completely different, since it uses a cyclic

error-correcting code.

6) “The left circular shift amounts in each round have been

approximately optimized, to yield a faster avalanche

effect. The four shifts used in each round are different

from the ones used in other rounds.” SHA uses a constant

shift amount in each round. This shift amount is relatively

prime to the word size, as in MD4.

This leads to the following comparison: SHA is MD4 with

the addition of an expand transformation, an extra round, and

better avalanche effect; MD5 is MD4 with improved bit

hashing, an extra round, and better avalanche effect [6].

Because SHA produces a 160-bit hash, it is more resistant to

brute-force attacks (including birthday attacks) than 128-bit

hash functions.

IV. DSA

In August 1991, The National Institute of Standards and

Technology (NIST) proposed the Digital Signature Algorithm

(DSA) for use in their Digital Signature Standard (DSS). This

is Public-Key Digital Signature Algorithm.

DSA is a variant of the Schnorr and ElGamal signature

algorithms, and is fully described in [2]. The algorithm uses

the following parameters:

p = a prime number L bits long, when L ranges from 512 to

1024 and is a multiple of 64. (In the original standard, the

size of p was fixed at 512 bits [1]. This was the source of

much criticism and was changed by NIST [2].)

q = a 160-bit prime factor of p – 1.

g = h
(p – 1)/q

 mod p, where h is any number less than p – 1 such

that h
(p – 1)/q

 mod p is greater than 1.

x = a number less than q.

y = g
x
 mod p.

The algorithm also makes use of a one-way hash function:

H(m). The standard specifies the Secure Hash Algorithm..

The first three parameters, p, q, and g, are public and can be

common across a network of users. The private key is x; the

public key is y.

To sign a message, m:

1) Sender generates a random number, k, less than q.

2) Sender generates

r = (g
k
 mod p) mod q

s = (k
-1

 (H(m) + xr)) mod q

The parameters r and s are her signature; she sends these

to recipient.

3) Recipient verifies the signature by computing

w = s
-1

 mod q

u1 = (H(m)
.
 w) mod q

u2 = (rw) mod q

v = ((g
u1 .

 y
u2

) mod p) mod q

If v = r, then the signature is verified.

Proofs for the mathematical relationships are found in [2].

Real-world implementations of DSA can often be speeded

up through precomputations. Notice that the value r does not

depend on the message. You can create a string of random k

values, and then precompute r values for each of them. You

can also precompute k
-1

 for each of those k values. Then, when

a message comes along, you can compute s for a given r and

k
-1

. This precomputation speeds up DSA considerably.

V. DSA PRIME GENERATION

Lenstra and Haber pointed out that certain moduli are much

easier to crack than others [3]. If someone forced a network to

use one of these “cooked” moduli, then their signatures would

ELECTRONICS, VOL. 15, NO. 2, DECEMBER 2011

76

be easier to forge. This isn’t a problem for two reasons: These

moduli are easy to detect and they are so rare that the chances

of using one when choosing a modulus randomly are almost

negligible—smaller, in fact, than the chances of accidentally

generating a composite number using a probabilistic prime

generation routine.

In [2] NIST recommended a specific method for generating

the two primes, p and q, where q divides p – 1. The prime p is

L bits long, between 512 and 1024 bits long, in some multiple

of 64 bits. The prime q is 160 bits long. Let L – 1 = 160n + b,

where L is the length of p, and n and b are two numbers and b

is less than 160.

1) Choose an arbitrary sequence of at least 160 bits and call

it S. Let g be the length of S in bits.

2) Compute U = SHA(S) SHA ((S + 1) mod 2
g
), where

SHA is the Secure Hash Algorithm.

3) Form q by setting the most significant bit and the least

significant bit of U to 1.

4) Check whether q is prime.

5) If q is not prime, go back to step 1.

6) Let C = 0 and N = 2.

7) For k = 0,1,..., n let Vk = SHA ((S + N + k) mod 2
g
)

8) Let W be the integer:

W = V0 + 2
160

V1 +...+ 2
160(n – 1)

Vn – 1 + 2
160n

(Vn mod 2
b
)

and let:

X = W + 2
L – 1

Note that X is an L-bit number.

9) Let: p = X – ((X mod 2q) – 1). Note that p is congruent to

1 mod 2q.

10) If p < 2
L – 1

, then go to step 13.

11) Check whether p is prime.

12) If p is prime, go to step 15.

13) Let C = C + 1 and N = N + n + 1.

14) If C = 4096, then go to step 1. Otherwise, go to step 7.

15) Save the value of S and the value of C used to generate p

and q.

In [2], the variable S is called the “seed,” C is called the

“counter,” and N the “offset”.

The point of this exercise is that there is a public means of

generating p and q. For all practical purposes, this method

prevents cooked values of p and q. If someone hands you a p

and a q, you might wonder where that person got them.

However, if someone hands you a value for S and C that

generated the random p and q, you can go through this routine

yourself. Using a one-way hash function, SHA in the standard,

prevents someone from working backwards from a p and q to

generate an S and C.

This security is better than what you get with RSA. In RSA,

the prime numbers are kept secret. Someone could generate a

fake prime or one of a special form that makes factoring

easier. Unless you know the private key, you won’t know that.

Here, even if you don’t know a person’s private key, you can

confirm that p and q have been generated randomly.

VI. SECURITY OF DSA

A. Attacks against k

Each signature requires a new value of k, and that value

must be chosen randomly. If anyone ever recovers k that

sender used to sign a message, perhaps by exploiting some

properties of the random-number generator that generated k,

he can recover sender’s private key, x. If anyone ever gets two

messages signed using the same k, even if he doesn’t know

what it is, he can recover x. And with x, anyone can generate

undetectable forgeries of sender’s signature. In any

implementation of the DSA, a good random-number generator

is essential to the system’s security [6].

B. Dangers from using Common Modulus

Even though the DSS does not specify a common modulus

to be shared by everyone, different implementations may. For

example, the Internal Revenue Service is considering using the

DSS for the electronic submission of tax returns. What if they

require every taxpayer in the country to use a common p and

q? Even though the standard doesn’t require a common

modulus, such an implementation accomplishes the same

thing. A common modulus too easily becomes a tempting

target for cryptanalysis. It is still too early to tell much about

different DSS implementations, but there is some cause for

concern.

C. Subliminal Channel in DSA

Gus Simmons discovered a subliminal channel in DSA [6].

This subliminal channel allows someone to embed a secret

message in his signature that can only be read by another

person who knows the key. According to Simmons, it is a

“remarkable coincidence” that the “apparently inherent

shortcomings of subliminal channels using the ElGamal

scheme can all be overcome” in the DSS, and that the DSS

“provides the most hospitable setting for subliminal

communications discovered to date.” NIST and NSA have not

commented on this subliminal channel; no one knows if they

even knew about it. Since this subliminal channel allows an

unscrupulous implementer of DSS to leak a piece of the

private key with each signature, it is important to never use an

implementation of DSS if you don’t trust the implementer.

VII. SOFTWARE REALIZATION

Fig. 2 and Fig. 3 show the block diagram of the realized

system for the digital signature. The program is fully written in

the Delphi programming language and development

environment that has been used is Borland Delphi 7. Delphi is

an object-oriented programming language used to implement

applications that run in the Windows operating system, and is

particularly suited for graphical applications and graphical

user interfaces (GUI). The syntax of the language is similar to

Pascal syntax, and the original name of Delphi was Object

Pascal. In addition to the main libraries that are used for

programming, BigInt library is used for operations with large

numbers (numbers greater than 64 bits). Procedures and

ELECTRONICS, VOL. 15, NO. 2, DECEMBER 2011

77

functions of BigInt library are used for measurement time, too.

Hereinafter, will be tested a presented system for digitally

signing DSA, and the results will be used to compare this

system with a digital signature system based on hash functions

and RSA algorithm [8]. In order to credibility compare of

these two systems, in both implementation used identical

algorithm and the same software implementation of SHA hash

functions, system simulation and measurement results were

carried out on the same computer and the time test of digital

signing the message used the same samples, i.e. the same file.

The user of software that implemented DSA may choose

public and private key length by selecting the prime number p

bit-length, which can be between 512 and 1024 bits, and the

selected length is multiple of 64. In purpose of testing DSA

algorithm were used prime numbers p of length 1024 bits, and

by thus is determined the length of public keys y, which are

also length 1024 bits. When you choose what will be the size

of p, by pressing a button in the program generate keys and

then save them in a given location on your computer. After the

keys are remembered as .id files on your computer, the user is

able to use a generated key many times to sign the message.

The public key is freely distributed and shared with other users

so that they were able to verify the signature, while the private

key, or file in which is preserved, stored on a computer, thus

leaving for the use only for the person whose identity is

represented by the private key. Block for generating prime

numbers p and q is implemented as described in Chapter 4.

Due to the conditions in steps 5 and 14, mentioned in above

chapter, to get the prime numbers that satisfy the conditions is

necessary to repeatedly execute a block of commands, and

therefore the time required to generate p and q varies

depending on the number of repeat loops. Table I is given a

minimum, maximum and average time needed to generate

1024-bit DSA key algorithm. By comparison, the next line in

the same table gives the time needed to generate a key the

same length using RSA.

For the source of messages a user can choose either a text

that will write or a file from his computer (images, movies,

documents ...). In case the message is chosen file, program

presents that file as a sequence of bytes, and then in the

sequence adds bits on way presented in the description of SHA

hash function. After adding bits, the total sequence length is a

multiple of 64 (one element of the array, byte = 8 bits; 64

bytes = 512 bits). When the message for signing is text entered

directly in program, then each character of text will be

presented to byte values corresponding to the ASCII character

representation (table). On this way program makes array of

bytes from text message. There is adding bits on the end of this

array too, so a length is a multiple of 64. Now we compute

SHA hash value of this array as described earlier in Chapter 2.

By using a hash value, randomly generated number k, and

previously generated and calculated parameters (p, q, g and x)

is calculating a digital signature in the manner explained in the

description of the DSA algorithm (Chapter 3). Times needed

to compute the digital signature, depending on the size of

messages are presented in Table II. These results are shown on

Fig. 4, too. These sizes of test message were used because 20

KB is the average size of e-mail without attachments, 100 KB

is size of a written document, 500 KB is size of medium

resolution jpg images, 1 MB is size of high resolution image,

and 3 MB is size of mp3 songs.

Fig. 2. Block diagram of realized system for digital signature – sender side.

Fig. 4. Time [ms] needed to digitally sign messages of different sizes.

Fig. 3. Block diagram of realized system for digital signature – recipient

side.

TABLE I

TIME TO GENERATE 1024-BIT KEYS

Time Min [ms] Average [ms] Max [ms]

DSA 28.93 354.8173 1437.738

RSA / 45.7217 /

TABLE II

TIME [MS] NEEDED TO DIGITALLY SIGN MESSAGES OF DIFFERENT SIZES

Message 20KB 100KB 500KB 1MB 3MB

DSA 2.7197 5.3297 18.077 37.588 98.789

RSA 6.563 9.162 21.951 40.616 101,04

ELECTRONICS, VOL. 15, NO. 2, DECEMBER 2011

78

The validation of digital signature and sender authentication

is performed in the last block of the scheme in Fig. 3.

Mathematical operations, described in Chapter 3, are applied

in the block for checking digital signature. These operations

use the sender's public key, the received message and digital

signature. First you need to calculate a hash value of message.

In our test for calculating a hash value of the received

message, and for checking the correctness of code that

calculates the SHA hash values, we used a free SlavaSoft's

HashCalc 2.02 software. At the end if v equals r then we can

safely say that the message is transferred in an unmodified

form and that is from the same sender whose public key we

decipher the message. If the compared values are different

message should be rejected because it is in transmission its

content is changed or it is not from the person who allegedly

signed. Signature verification procedure in the depicted

software implementation of the DSA algorithm takes an

average of 2.97 ms, while the same operation for the RSA

algorithm required 5.817 ms.

VIII. CONCLUSION

With 512-bits key DSA wasn’t strong enough for long-term

security. With 1024-bits key it is, and for that reason is used in

this software implementation.

DSA keys generation is a much slower than the RSA

algorithm, the time required to digitally sign messages are

similar, if larger files are signed (on the order MB and larger),

while the DSA is faster at the signing of small files and text

messages, as at verifying the digital signature.

Unlike RSA, DSA can't be used for the encryption or key

distribution, but this is not the point of the DSS standard. This

is a digital signatures standard. It is possible to use these two

algorithms for realization another system for digital signatures,

which would use DSA for digital signing and RSA for keys

distribution. The reason for usage DSA for signing, and not

RSA, is security, because it offers the possibility to check the

manners in which primes p and q are generated. The RSA

algorithm, prime numbers are kept confidential, and

verification that they intentionally used their specific values is

possible only with the knowledge of the private key. At DSA

algorithm only publicly available variables S and C (seed and

counter) can be used for checking without disclosing the

private key.

REFERENCES

[1] National Institute of Standards and Technology, NIST FIPS PUB XX.

„Digital Signature Standard“, U.S. Departmentof Commerce, DRAFT,

19 Aug 1991.

[2] National Institute of Standards and Technology, NIST FIPS PUB 186.

„Digital Signature Standard“, U.S. Departmentof Commerce, May

1994.

[3] A. K. Lenstra and S. Haber, letter to NIST Regarding DSS, 26 Nov

1991.

[4] G. J. Simmons, „The Subliminal Channels of the U.S. Digital Signature

Algorithm (DSA)“, Proceedings of the Third Symposium on: State and

Progress of Research in Cryptography, Rome: Fondazone Ugo Bordoni,

1993, pp. 35 – 54.

[5] D. Drajić, P. Ivaniš, “Uvod u teoriju informacija i kodovanje”,

Akademska misao, Beograd, 2009.

[6] B. Schneier, “Primenjena kriptografija”, Mikro knjiga, Beograd, 2007.

[7] IETF RFC 4634 - US Secure Hash Algorithms (SHA and HMAC-SHA),

http://www.ietf.org/rfc/rfc4634.txt.

[8] B. Pajčin, P Ivaniš, “Softverska realizacija sistema za digitalno

potpisivanje sa heš funkcijama i RSA algoritmom”, Infoteh-Jahorina

2011, Jahorina 2011.

[9] IETF RFC 1186 - The MD4 Message Digest Algorithm,

http://www.ietf.org/rfc/rfc1186.txt.

[10] IETF RFC 1321 - MD5 Message-Digest Algorithm,

http://www.ietf.org/rfc/rfc1321.txt.

