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Abstract—Industrial practice imposes the problem of 

measuring physical quantities in terms of quality, which is the 

primary requirement of process control with good performance, 

and further processing of data in terms of application of 

algorithms to detect and isolate failures. In order to overcome the 

phenomenon of outliers, which is common in industrial practice, 

it is necessary to apply some of the techniques of robust 

identification. This paper presents a new approach to robust 

adaptive identification which was used to identify the parameters 

of steam separator.  It would be possible to apply techniques for 

the failure detection and isolation based on the model of the 

process, as well as in terms of better process control. The 

comparison with the classical approach was carried out and 

demonstrated the efficacy proposed algorithm. 

 
Index Terms—Fault detection, robust process identification, 

steam separators, thermal power plants. 

 

I. INTRODUCTION 

HE needs of modern industry are growing every day and 
the application of advanced process control techniques, 

modern equipment maintenance and servicing and energy 
efficiency is required. To satisfy these requirements it is 
necessary to know the process in terms of its characteristics 
and model, and it is very important to apply some procedure 
for early fault detection and isolation. Many of the methods 
which are dealing with these problems are based on the 
knowledge of a good process model, and therefore we can 
design modern process control, as well as FDI systems to 
quickly detect and isolate faults in complex systems. 

In order to obtain a good process model special attention 
should be paid to the identification process, including the 
selection of an appropriate model, the process and model 
inputs, and identification methods. If the process is time 
variant, it is necessary to perform identification in real time, 
which further complicates the problem in terms of automation 
procedures without human supervision. In industrial practice,
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a large number of measurements are under the influence of 
high-level noise, which significantly reduces the performance 
of identification systems. A large number of methods assume 
that the measuring noise is with normal distribution and then it 
is possible to effectively estimate the parameters of the 
system. If the measurement noise does not have Gaussian 
distribution, it is necessary to apply more complex techniques 
to achieve satisfactory results. The paper presents a new 
robust adaptive parameters estimation procedure [1], [2] based 
on QQ-plot [3], [4] which can effectively deal with processes 
that have measurements with pulse noise, so called outliers. 

For better performance and effective process control it is 
necessary to have reliable sensors and actuators. It is also of 
great importance to have a procedure that can efficiently 
detect not only the failures of individual components, but to 
monitor changes of their characteristics over time, so that 
timely servicing or calibration equipment facility can be done. 
Such a system should possess characteristics such as reliability 
and efficiency in terms of rapid and timely detection of failure, 
but also a small number of false alarms to avoid disfiguring 
the confidence in decisions made by the system. 

The paper will show methods for M-robust estimation of 
system parameters that will be applied to a concrete example 
of the process of water steam separation in the steam power 
plant Kostolac TEKO B1. This example will illustrate the 
application of the algorithm on a process that has a 
measurement with a high degree of impulse noise (outliers), 
which significantly affects the recursive identification of 
parameters in real time, with which the standard identification 
methods cannot cope in terms of achieving performance. 
Results of identification can be used to monitor the system 
operation, to detect and isolate failures, as well as changes in 
the performance of individual components, such as water level 
and flow sensors in this case. 

The paper is structured as follows: Following the 
Introduction, Section 2 contains a detailed description of the 
steam drum system in a thermal power plant boiler, as well as 
an explanation of relevant processes which take place in the 
system. Section 3 proposes a method for robust adaptive 
estimation of process parameters, which is extremely 
important for the identification of parameters of the analyzed 
subsystem, given the pulse noise present in the measurements. 
Finally, Section 4 discusses specific results of application of 
the proposed approach in a real steam separator system. 
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II. ROBUST ADAPTIVE SYSTEM IDENTIFICATION BASED ON 

QQ PLOTS 

Let us consider a linear, time invariant, discrete system 
defined as:  

( ) ( ) ( ) ( )
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k k
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  (1) 

where y(i), u(i), and ξ(i) are the system output, measurable 
input and noise, respectively. The linear regression form of (1) 
is given as: 

( ) ( ) ( )T
y i Z i iξ= Θ +

     (2) 
where the regression vector is  
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and  represents a vector of 
unknown system parameters.  
System identification can be reduced to minimization of 
following criteria: 
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where  is the output prediction 
error or measurement residual, and ρ(.) is a loss function, 
which for maximum likelihood is defined as 

, where  is the probability density 
function. If the noise distribution is Gaussian, then 
minimization of (4) is classical least square method. If there is 
an impulse noise in measurements, then the application of this 
approach is inadequate because of poor performance. Huber 
recommended that the probability density function in such 
cases should be chosen as a normal distribution in the middle 
and exponential in the tails.  For such a PDF, Huber's loss 
function is defined as: 
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A recursive M-robust estimation can be described with the 

following equations: 
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where the influence function is defined as: 
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For ε-contaminated noise with probability density function: 

( ) ( ) ( )2 21 0, 0, op N Nε σ ε σ= − +     (8) 

where the outlier variance is much greater than noise variance,  

. Now, it is possible to define the M-robust 

influence function: 

( ) ( )
'

ln p Ψ ⋅ = −         (9) 
In order to apply this kind of recursive identification, it is 

necessary to estimate parameters of PDF that define the signal, 
using QQ diagrams and then construct a M-robust influence 
function (9), using the results of equation (8), shown in Fig. 1, 

for different parameters ,  and . 
 

  

 
Fig. 1.  Influence function for different parameters. 
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Fig. 2.  Data classification (regular and impulse noise measurements). 
QQ-plot before and after data classification. 

 
The algorithm consists of the following steps: 

• classification of data into two categories, using QQ 
plot techniques, as shown in Fig. 2, the regular 
data and outliers. It is first necessary to determine 

curves and ,  and then it is easy to perform 
the classification of data, 

• then perform the estimation of the parameters of 
statistics from equation (8), using the least squares 
method 

• determine contamination degree , as a ratio 
between contamination of detected outlier and the 
total number of measurements on a particular 
window, 

• then construct M-robust influence function obtained 
by including parameters in Equation (9) 

•  the final estimation is done using the parameters of 
the system in equations (6) 

III. STEAM SEPARATOR PARAMETER IDENTIFICATION  OF 

THERMAL POWERPLANT KOSTOLAC B1 

Thermal power plants are the largest generators of 
electricity in Serbia, contributing more than 65% to the overall 
power supply. As such, their operational efficiency and 
stability needs to be maximized. Special emphasis is placed on 
reliable long-term operation in terms of negotiated delivery 
commitments, operation per design criteria for energy 
efficiency, and longevity of the facility. It is, therefore, 
extremely important to monitor vital subsystems and their 
individual components, such that early detection of any 
change in characteristics, or faults, will prevent accidents, 
down time, and substantial financial loss. 

The paper addresses steam drums in thermal power plant 
boilers [5]-[7]. A boiler is a unit in which the chemical energy 
of fossil fuel is converted into heat energy of steam. Fig. 3 
shows the basic structure of a steam boiler. An even number 
of mills (usually 6 or 8) break up and grind coal and then a 
mixture of coal and preheated air is routed to a furnace via a 
system of ducts. In parallel, the oxygen needed for combustion 
is provided by an air supply fan. On the way to the furnace, 

the air is additionally heated to enhance combustion. 
Temperatures inside the furnace are as high as 1400 ºC, such 
that all its parts need to be resistant to such temperatures.   

Feedwater pumps deliver partially heated water to the steam 
drum via an economizer, and then additional pumps discharge 
the water into a system of pipes where multi-stage heating 
takes place inside the boiler and the water is converted into 
steam. The steam drum also removes residual drops of water 
from the steam. The steam is then delivered to a multi-stage 
superheater where it is heated to about 540 ºC at a nominal 
pressure (usually 165-175 bars) before it leaves the boiler, and 
the superheated steam continues on to the turbine.   

Specifically, at the TEKO B1 Unit of the Kostolac Thermal 
Power Plant, the diameter of the steam drum is 0.9 m and its 
height is about 24 m (Fig. 1(b)). Even a small water level 
variation inside the steam drum results in noticeable steam 
pressure fluctuations and affects the technical conditions of 
the process. If the water level is too high, emergency relief 
valves open to remove excess water and this improves the 
operational efficiency of the unit. However, if the water level 
is too low, after a certain time a boiler shutdown procedure is 
initiated automatically, to protect the piping from overheating. 
As a result, maintenance of the required water level is a very 
important control requirement. 

 
Fig. 3.  Schematic of a typical boiler: 1-Exhaust fan, 2-Feedwater pumps, 
3-Main feedwater control valve, 4-Economizer, 5-Steam drum, 6-Primary 
preheater, 7-Secondary preheater, 8-Air supply fan, 9-Air preheater. 
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Fig. 4.  Steam drum:  - input feedwater flow,  - fresh steam output 
flow. 

Given that the water level in the steam drum depends on 
the water flow to the drum and the steam flow from the drum, 
and since an integrating effect is inherent in the process, the 
following discrete separator model in the form of discrete 
transfer functions is proposed: 

 
 (10) 

where  is water level in stem drum,  feedwater 
flow, and  steam flow on the output (Fig. 4). 

Using comparative analysis of models of different order, 
it was concluded that the minimum order model that 
adequately describes the system is three, and the proposed 
forms of polynomials in the numerator and denominator are: 

 

  (11) 

 
This model is not adequate for modeling the dynamics of 

the system. Taking this into account, and that the process is 
integrator type, a priori information was implemented into the 
model as: 

 
 (12) 

In time domain nine parameters model is presented as: 

 
(13) 

where  is the level difference in 
two time sample.  

The water-level signal noise cannot be modeled in the usual 
manner, with Gaussian zero-mean distribution. Such a 
measurement sequence includes sporadic high-intensity noise, 
or outliers. This can be attributed to the fluid level 
measurement procedure which involves differential pressure 
measurements in the steam drum, where a large liquid and 
steam fluctuations produce measurement noise. Pulse noise 
originates from sudden evaporation and the appearance of 

large steam bubbles inside the vessel, which rapidly separate 
on the surface and create a pressure disturbance. This nature of 
the measurement noise prevents the application of standard 
identification procedures, so the paper proposes robust 
adaptive parameter estimation which is highly efficient in the 
case of measurements with pulse noise.  

Proposed procedure is applied and the results of estimation 
of level and measured levels are presented, in Fig. 5, for 24 
hour time period without system fault. Estimation of level is 
satisfactory, and this is a verification of the proposed 
procedure, as well as the order of adopted model. Fig. 6 shows 
the movements of the model parameters (13) in time. It is 
obvious that the contribution of robust estimation is 
significant, in the sense that the occurrence of impulsive noise 
does not affect the procedure as significantly as a disturbance. 

The Figs 7 and 8 show the estimation of water level in the 
water/steam separator in the system when there is a failure, 
which is modeled as a multiplicative failure (30%) measuring 
the water level and water flow. 

During the real time recursive estimation it is necessary to 
determine the forgetting factor, as the balance between the 
speed of detection of parameter changes and the quality of 
identification. As the appearance of impulse noise 
significantly affects the deterioration of estimation, it is 
necessary to increase the forgetting factor, and thus slow down 
the detection of changes in the state system. As the proposed 
procedure significantly reduces the impact of poor impulse 
measurements, the forgetting factor may have a low value and 
thus affect the reduced time to detect failures. 

 
Fig. 5.  Estimated water level (red) and measured water level (blue) in steam 
drum without fault. 
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Fig. 6.  Movement of estimated parameters in time: proposed method (blue) 
and recursive least squared method (red). 

 

 

Fig. 7.  Estimated level (red) and measured water level (blue) in steam drum 
with level sensor fault. 
 

 
Fig. 8.  Estimated level (red) and measured water level (blue) in steam drum 
with feedwater flow sensor fault. 
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Fig. 9.  Classes of operating regimes after dimension reduction: nominal 
regime without fault (black), level sensor fault (red), feedwater flow sensor 
fault(blue), steam flow sensor fault (green). 

IV. CONCLUSION 

In this paper an adaptive method for robust estimation of 
system parameters based on QQ-plots and its application on a 
system of power plant steam separator TEKO Kostolac B1 
320~MW nominal power has been presented. 

A comparison with the classical recursive least squares 
method has been done, and the significant improvement in the 
estimation of parameters of the system has been shown. These 
results become usable for better process control, and they can 
be applied also to detect failures in the steam separator system, 
after using techniques for dimension reduction as shown in 
Fig. 9.  
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