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Abstract—To achieve the full flexibility of industrial robots, in 

addition to the mechanical flexibility, it is necessary to achieve the 

flexibility in control. Precise automatic calibration of these robots 

manipulators is essential precondition for achieving this goal.  

Possibilities and limitations of stereo vision system 

implementation for automatic calibration of manipulators are 

presented in this paper. Furthermore, a practical solution for the 

problem of corresponding points using an area based algorithm is 

given. Analysis has been conducted of how the marker positioning 

on the manipulator end-effector influences the shape of the cost 

function.  Choice of window size relative to marker size which 

provides the best reliability for corresponding area determination 

is proposed. Results of practical realization, which confirms 

conducted analysis and reliability of proposed calibration 

procedure, are presented. 

 
Index Terms—Camera calibration, Computer vision, Modular 

reconfigurable robot, Robot calibration. 

I. INTRODUCTION 

high level of positioning accuracy is an essential 

requirement in a wide range of industrial robots 

applications. This accuracy is affected by geometric factors 

(geometrical parameters accuracy) and non-geometric factors 

(gear backlashes, encoder resolution, flexibility of links, 

thermal effects, etc.). 

The error due to geometric factors accounted for 90% of the 

total error. A common approach is to calibrate the current 

geometric parameters and treat the non-geometric factors as a 

randomly distributed error. The calibration procedure is very 

important for robot programming using CAD systems where 

the simulated robot must reflect accuracy the real robot. 

During a manipulator control system design, and periodically 

in the course of task performing, manipulator geometry 

calibration is required [1]. 

Vision systems have developed significantly over the last ten 

years and now have become standard automation components. 

They represent qualitative bounce in the area of metrology and 

sensing because they provide us with a remarkable amount of 

information about our surroundings, without direct physical 

contact [2]. At the same time, vision systems are the most 

complex sensors [3].   
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Calibration of cameras is necessary first step in vision 

system using. Camera calibration is the process of determining 

the internal camera (geometric and optical) characteristics and 

the 3D position and orientation of the camera frame relative to 

a world coordinate system [2], [4]. There are a number of 

techniques which only requires the camera to observe a planar 

pattern(s) shown at a few different orientations. Precise set 

points are placed on the calibration plain.  Calibration process 

is automatically performed based on the correspondence 

between the positions of calibration points and the positions of 

their images [5], [6].    

If the camera calibration is performed then for every scene 

point in a world coordinate system it is possible to determine 

the position of its image point in image plain.  This 

transformation is called perspective transformation. Inverse 

perspective transformation is very important for computer 

vision application in industrial automation. This 

transformation examines the problem of how to identify the 

point position in a world coordinate system based on the 

position of its image point for different camera positions or for 

several cameras at the same time.  

Inverse perspective transformation and advances in 

processing and image analysis have a wide range of 

applications in industrial automation, and allow companies to 

achieve previously impossible levels of efficiency and 

productivity [7]. Effective co-operation in the computer aided 

manufacturing depends on the recognition and perception of 

typical production environments as well as on the 

understanding of tasks in their context. Vision systems are the 

basis for scene analysis and interpretation, both in time and 3D 

space. Measurement of the dimensions of objects and parts in 

many industrial fields is very important, as the quality of the 

product depends especially on the reliability and precision of 

each object part. The use of vision-based metrology allows 

calculating a set of 3D point coordinates and/or estimate the 

dimension and pose of a known object. They enable industrial 

robots to perform different and complex tasks reliably and 

accurately [8].  

II. ROBOT CALIBRATION 

A. Manipulator Geometry Modeling 

The first step of manipulator calibration is concerned with a 

mathematical formulation that results in model which gives 
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relation between the geometric parameters, the joint variables 

and end-effector position. Many researchers have been looking 

for the suitable kinematic models for robot calibration, since 

Richard Paul’s book [9]. The most popular among them is the 

Denavit-Hartenberg (D-H) method. For this reason we will use 

this notation.  

Prior description kinematic model let us define the basic 

coordinate systems as follows (Fig. 1.): 

OBXBYBZB – base coordinate system of the manipulator 

OEXEYEZE – end-effector (tool) coordinate system of the 

manipulator (we denote the origin OE as the endpoint of the 

robot) 

OiXiYiZi (i=1, n) – coordinate system fixed to the i
th

 link 

(OnXnYnZn – coordinate system fixed to the terminal link) of 

the manipulator. 

The original D-H representation of a rigid link depends on 

geometric parameters. Four parameters a,d,α and θ denote 

manipulator link length, link offset, joint twist and joint angle, 

respectively. Composite 4x4 homogenous transformation 

matrix Ai-1,i known as the D-H transformation matrix for 

adjacent coordinate system i and i-1, is: 
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The homogenous matrix AB,i which specifies the location of 

the i
th

 coordinate system with respect to the base coordinate 

system is the chain product of successive coordinate 

transformation matrices Ai-1,i, and expressed as: 

 AB,i = AB,1 A1,2 … Ai-1,i.  (2) 

Particularly, for i=n we have AB,n matrix which specifies the 

position and orientation of the end-effector of the manipulator 

with respect to the base coordinate system. Matrix AB,n is a 

function of the 4n geometrical parameters which are constant 

for constant robot geometry, and n joint coordinates that 

change their value when manipulator moves.  

Moreover, a robot is not intended to perform a single 

operation at the workcell, it has interchangeable different 

tools. In order to facilitate the programming of the task, it is 

more practical to have transformation matrix defining the tool 

coordinate system with respect to the terminal link coordinate 

system An,E.  

Thus, the transformation matrix Aw,E can be written as: 

 Aw,E = Aw,B AB,n An,E.  (3) 

Since the world coordinate system can be chosen arbitrarily by 

the user, six parameters are needed to locate the robot base 

relative to the world coordinate system. From independence to 

some manipulator parameters it follows that consecutive 

coordinate systems are represented at most by four 

independent parameters. 

   Since the end-effector coordinate system can be defined 

arbitrarily with respect to the terminal link coordinate system 

(OnXnYnZn), six parameters are needed to define the matrix 

An,E. If we extend the robot notation to the definition of the 

end-effector coordinate system, it follows that the end-effector 

coordinate system introduces four independent parameters. For 

more details the reader can refer to [1].  

With above mentioned equations (1), (2), (3) dependence 

between joint coordinates and geometrical parameters, and 

endpoint location of the tool can be written as: 

 x=f(q,g
0
) (4) 

where x,q,g
0
 denotes end-effector position vector expressed in 

the world coordinate system, vector of the joint variables, and 

vector of the geometric parameters, respectively. Dimension of 

the vector x is 6 if measurement can be made on the location 

and orientation of the end-effector. However, the most 

frequently only a location of the endpoint is measured, and 

therefore dimension of a vector x is 3. Dimension of the vector 

q is equivalent to the number of DOF for manipulator. 

Dimension of the vector g
0
 is at most 4n+6. 

B. Geometric Parameters Estimation Based on the 

Differential Model 

The calibration of the geometric parameters is based on 

estimating the parameters minimizing the difference between a 

function of the real robot variables and corresponding 

mathematical model. Many authors [10]–[13] presented open-

loop methods that estimate the kinematic parameters of 

manipulators performing on the basis of joint coordinates and 

the Cartesian coordinates of the end-effector measurements. 

The joint encoders outputs readings are joint coordinates. It is 

assumed that there is a measuring device that can sense the 

position (sometime orientation) of an end-effector Cartesian 

coordinates. 

A mobile closed kinematic chain method has been proposed 

that obviates the need for pose measurement by forming a 

manipulator into a mobile closed kinematic chain [14], [15]. 

Self motion of the mobile closed chain places manipulator in a 

number of configurations and the kinematic parameters are 

determined from the joint position readings alone. 

The calibration using the end-efector coordinates (open-loop 

method) is the most popular one. The model represented by 

equation (4) is nonlinear in g
0
, and we must linearize it in 

order to apply linear estimators. The differential model 

provides the differential variation of the location of the end-

effector as a function of the differential variation of the 

 
Fig. 1.  Coordinate systems assignment for robot modeling. 
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geometric parameters. The function to be minimized is the 

difference between the measured (x) and calculated end-

effector location (x
m
). Let ∆x=x-x

m
, and ∆g= g

0
-g be the pose 

error vector of end-effector and geometric parameter error 

vector, respectively (g – vector of geometric parameters 

estimation). From equation (4), the calibration model can be 

represented by the linear differential equation 

 ∆x=Jg ∆g = x-x
m
 , (5)  

where: 

g  is the (p x 1) vector of geometric parameters estimation 

∆x=x-x
m
 is the (r x 1) pose error vector of end-effector 

∆g= g
0
-g is the geometric parameter error vector 

Jg is the (r x p) sensitivity matrix relating the variation of the 

endpoint position with respect to the geometric parameters 

variation (calibration Jacobian matrix) [10], [13]. 

To estimate ∆g we apply equation (5) for a number of 

manipulator configurations. It gives the system of equations: 

 ∆X=Φ ∆g +E  (6) 

where is: 
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and E is the error vector which includes the effect of 

unmodeled non-geometric parameters: 
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Equation (6) can be used to estimate iteratively the 

geometric parameters. This equation is solved to get the least-

squares error solution to the current parameters estimate. The 

least-squares solution can be obtained from: 

 ∆g= (ΦΤ Φ)−1 ΦΤ∆X. (9) 

At the each iteration, geometric parameters are updated by 

adding ∆g to the current value of g: 

 g=g+∆g. (10) 

By solving equations (9) and (10) alternately, the procedure 

is iterated until the ∆g approaches zero. 

Calibration a manipulator is an identification process, and 

hence, one should take a careful look at the identifability of the 

model parameters [10], [14]. A general method to determine 

these parameters have been proposed in [14]. Determination of 

the identifiable (base) geometric parameters is based on the 

rank of the matrix Φ. Some parameters of manipulator related 

to the locked passive joints may become unidentifiable in the 

calibration algorithm due to the mobility constraints.  It 

reduces number of identifiable parameters in general for the 

closed-loop kinematic chain approach, compared with open-

loop case. 

As the measurement process is generally time consuming, 

the goal is to use set of manipulator configurations that use 

limited number of optimum points on the parameters 

estimation. Furthermore, goal is to minimize the effect of noise 

on the parameters estimation. The condition number of the 

matrix Φ gives a good estimate of the persistent excitation [1]. 

Therefore, much work was led on finding the so-called optimal 

excitation. The task of selecting the optimum manipulator 

configurations to be used during the calibration is discussed 

and solutions are proposed in [14]–[16]. It is worth noting that 

most of geometric calibration methods give an acceptable 

condition number using random configurations. The paper [17] 

presents an updating algorithm to reduce the complexity of 

computing and observability index for kinematic calibration of 

robots. An active calibration algorithm is developed to include 

an updating algorithm in the pose selection process. 

III. COMPUTER VISION 

A. Camera Model 

This section describes the camera model. Fig. 2. illustrates 

the basic geometry of the camera model. The camera performs 

transformation from the 3D projective space to the 2D 

projective space. The projection is carried by an optical ray 

originating (or reflected) from a scene point P. The optical ray 

passes through the optical center Oc and hits the image plane at 

the point p.    

Prior describing the perspective transformation, and camera 

model, let us define the basic coordinate systems. The 

coordinate frames are defined as follows: 

OwXwYwZw - world coordinate system (fixed reference 

system), where Ow represents the principal point. The world 

coordinate system is assigned in any convenient location. 

OcXcYcZc - camera centered coordinate system, where Oc 

represents the principal point on the optical center of the 

camera. The camera coordinate system is the reference 

system used for camera calibration, with the Zc axis the same 

as the optical axis.  

OiXiYiZi - image coordinate system, where Oi represents the 

intersection of the image plane with the optical axis. XiYi 

plane is parallel to XcYc plane. 

 Let (xw, yw, zw) are the 3D coordinates of the object point P 

in the 3D world coordinate system, and (u,v)  position of  the 

corresponding pixel in the digitized image. A projection of the 

point P to the image point p  may be represented by a 3x4 

 
Fig. 2.  The basic geometry of the camera model. 
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projection matrix (or camera matrix) M [2], [5]: 

 [ ] MPPTRKp == . (11) 

Matrix: 
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is called the internal (intrinsic) camera transformation matrix. 

Parameters α, β, u0 and v0 are so called internal distortion-free 

camera parameters. 

R and T, a 3x3 orthogonal matrix representing the camera’s 

orientation and a translation vector representing its position, 

are given by: 
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respectively. The parameters r11, r12, r13, r21,  r22, r23, r31,  r32, 

r33, tx, ty, tz are external (extrinsic) parameters and represent the 

camera’s position refereed to the word coordinate system. 

Projection in an ideal imagining system is governed by the 

pin-hole model. Real optical system suffers from a number 

types of distortion. The first one is caused by real lens 

spherical surfaces and manifests itself by radial position error. 

Radial distortion causes an inward or outward displacement of 

a given image point from its ideal (distortion free) location. 

This type of distortion is mainly caused by flawed radial 

curvature curve of the les elements. A negative radial 

displacement (a point is imaged at a distance from the 

principle point that is smaller than predicted by the distortion 

free model) of the image point is referred to as barrel 

distortion. A positive radial displacement (a point is imaged at 

a distance from point that is larger than the predicted by the 

distortion free model) of the image point is referred to as pin-

cushion distortion. The displacement is increasing with 

distance from the optical axis. This type of distortion is strictly 

symmetric about the optical axis. Fig. 3. illustrates the effect of 

radial distortion. 

The radial distortion of a perfectly centered lens is usually 

modeled using the equations: 
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where r is the radial distance from the principal point of the 

image plane, and k1,k2,… are coefficients of radial distortion. 

Only even powers of the distance r from the principal point 

occur, and typically only the first, or the first and the second 

terms in the power series are retained.             

The real imagining systems also suffer from tangential 

distortion, which is at right angle to the vector from the center 

of the image. That type of distortion is generally caused by 

improper lens and camera assembly. Like radial distortion, 

tangential distortion grows with distance from the center of 

distortion and can be represented by equations: 

 ...)( 4

2

2

1 ++−=∆ rlrlyx it , (16) 
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Fig.4. illustrates the effect of tangential distortion. 

The reader is referred to [2]–[4] for more elaborated and 

more complicated lens models.  

Note that one can express the distorted image coordinates as 

a power series using undistorted image coordinates as 

variables, or one can express undistorted image coordinates as 

a power series in the distorted image coordinates. The r in the 

above equations can be either based on actual image 

coordinates or distortion-free coordinates. 

Bearing in mind the radial and tangential distortion, 

correspondence between distortion-free and distorted pixels 

image coordinates can be expressed by: 

 trid xxxx ∆+∆+= , (18) 

 trid yyyy ∆+∆+= . (19) 

The parameters representing distortion of an image are: 

k1,k2,…, l1,l2,… The distortion tends to be more noticeable with 

wide-angle lenses than telephoto lenses. Electro-optical 

systems typically have larger distortions than optical systems 

made of glass. 

B. Camera Calibration 

 Camera calibration is considered as an important issue in 

computer vision applications. With the increasing need for 

higher accuracy measurement in computer vision, if has also 

attracted research effort in this subject. Task of camera 

calibration is to compute the camera projection matrix M from 

a set of image-scene point correspondences. By 

correspondences it means a set ( ){ }m

iii Pp
1

,
=

where pi is a 

homogeneous vector representing image point and Pi is a 

homogeneous vector representing scene point, at the i
th

 step. 

Equation (11) gives an important result: the projection of a 

point P to an image point p by a camera is given by a linear 

mapping (in homogeneous coordinates): 

 MPp = . (20) 

The matrix M is non-square and thus the mapping is many-

to-one. All scene points on a ray project to a single image 

point. 

To compute M, it have to be solved the system of 

homogeneous linear equations 

 iii MPps = , (21) 

where si are scale factors.  

Camera calibration is performed by observing a calibration 

object whose geometry in 3D space is known with very good 

precision. The calibration object usually consists of two or 

three planes orthogonal to each other. These approaches 

 
Fig. 3.  Effect of radial distortion illustrated on a grid. 
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require an expensive calibration apparatus. Accurate planar 

targets are easier to make and maintain than three-dimensional 

targets. There is a number of techniques which only requires 

the camera to observe a planar pattern(s) shown at a few 

different orientation (Fig. 5). The calibration points are created 

by impressing a template of black squares (usually chess-board 

pattern) or dots on top of white planar surface (steel or even a 

hard book cover [5]). The corners of the squares are treated as 

a calibration points. Because the corners are always rounded, it 

is recommended to measure the coordinate of a number of 

points along the edges of the square away from the corners, 

and then extrapolate the edges to obtain position of the corners 

which lie on the intersection of adjacent edges. 

 

Due to the high accuracy performance requirement for 

camera calibration, a sub-pixel estimator is desirable. It is a 

procedure that attempts to estimate the value of an attribute in 

the image to greater precision than that normally considered 

attainable within restrictions of the discretization. Since the 

CCD camera has relatively low resolutions, interest in a sub-

pixel method arises when one applies CCD-based image 

systems to the computer integrated manufacturing [6].  

Camera calibration entails solving for a large number of  

calibration parameters, resulting in the large scale nonlinear 

search. The efficient way of avoiding this large scale nonlinear 

search is to use two-stage technique, described in [2]. The 

methods of this type in the first stage use a closed-form 

solution for most of the calibration parameters, and in the 

second stage iterative solution for the other parameters. 

 In [4] a two-stage approach was adopted with some 

modification. In the first step, the calibration parameters are 

estimated using a closed-form solution based on a distortion-

free camera model. In the second step, the parameters 

estimated in the first step are improved iteratively through a 

nonlinear optimization, taking into account camera distortion. 

Since the algorithm that computes a closed-form solution is no 

iterative, it is fast, and solution is generally guaranteed. In the 

first step, only points near the optical axis are used. 

Consequently, the closed-form solution isn’t affected very 

much by distortion and is good enough to be used as an initial 

guess for further optimization. If an approximate solution is 

given as an initial guess, the number of iterations can be 

significantly reduced, and the globally optimal solution can be 

reliably reached. 

C. Stereo Vision 

Calibration of one camera and knowledge of the coordinates 

of one image point allows us to determine a ray in space 

uniquely (back-projection of point). Given a homogeneous 

image point p, we want to find its original point P from the 

working space. This original point P is not given uniquely, but 

all points on a scene ray from image point p. Here, we will 

consider how to compute 3D scene point P from projections pi 

in the several cameras, or projections pi in one camera at 

different positions (different images are denoted by superscript 

i). Assume that m views are available, so that we have to solve 

linear system   

 PMps iii = , i=1,…,m.  (22) 

This approach is known as triangulation (it can be 

interpreted in terms of similar triangles). Geometrically, it is a 

process of finding the common intersection of m rays given by 

back-projection of the image points by the cameras. In the 

reality, image  points pi are corrupted by noise, and the rays 

will not intersect and the system would have no solution. We 

might compute P as the scene point closest to all of the skew 

rays. 

If two calibrated cameras observe the same scene point P, its 

3D coordinates can be computed as the intersection of two of 

such rays. The epipolar geometry is a basis of a system with 

two cameras (principle of stereo vision). It is illustrated on  

Fig.   6.  

 
Fig. 5.  Illustration of experimental setup for camera calibration using 

coplanar set of points. 

 
Fig. 6.  The epipolar geometry. 

 
Fig. 4.  Effect of tangential distortion. 
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Let 1

cO , 2

cO  represents the optical centers of the first and 

second camera, respectively. The same consideration holds if 

one camera takes two images from two different locations. In 

that case 1

cO  represents optical center of the camera when the 

first image is obtained, and   2

cO  represents the optical center 

for the second image.p1 and p2 denote the images of the 3D 

point P. The base line is the line joining the camera centers 1

cO  

and 2

cO . The baseline intersects the image planes in the 

epipoles e1 and e2. Alternatively, an epipole is the image of the 

optical center of one camera in the other camera. Any scene 

point P and the two corresponding rays from optical centers 
1

cO  and 2

cO define an epipolar plane. This plane intersects the 

image plane in the epipolar line. It means, an epipolar line is 

the projection of the ray in one camera into the other camera. 

Obviously, the ray 1

cO P represents all possible positions of P 

for the first image and is seen as the epipolar line l2 in the 

second image. The point p2 in the second image that 

corresponds to p1 must thus lie on the epipolar line in the 

second image l2, and reverse. The fact that the positions of two 

corresponding image points are not arbitrary is known as the 

epipolar constraint. This is a very important statement for the 

stereo vision. The epipolar constraint reduces the 

dimensionality of the search space for a correspondence 

between p1 and p2 in the second image from 2D to 1D.   

A special relative position of the stereo cameras is called 

rectified configuration.  In this case image planes coincide and 

line 1

cO 2

cO  is parallel to them, as shown in Fig. 7. 

  The epipoles e1 and e2 go to infinity, and epipolar lines 

coincide with image rows, as a consequence. For the rectified 

configuration, if the internal calibration parameters of both 

cameras are equal, it implies that corresponding points can be 

sought in 1D space along image rows (epipolar lines). 

The optical axes are parallel, which leads to the notion of 

disparity that is often used in stereo vision literature.  Top 

view of two cameras stereo configuration with parallel optical 

axes is shown in Fig. 8. World coordinate system is parallel to 

cameras coordinate systems. The principal point Ow of the 

world coordinate system is assigned on the midway on the 

baseline. The coordinate zw of point P represents its distance 

from the cameras (zw =0), and can be calculated from the 

disparity d=u1- u2. Values u1- u2 are measured at the same 

height (same rows of images). Noting that: 
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we have: 

 .
d

Bf
zw =  (24) 

The remaining two coordinates of the 3D point P can be 

calculated from equations: 

         
d

uuB
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The position of the point P in the 3D scene can be calculated 

from the disparity d. It is a question, how the same point can 

be found in two images if the same scene is observed from two 

different viewpoints. The solution of this correspondence 

problem is a key step in any stereo vision. Automatic solution 

of the correspondence problem is under extensive exploration. 

Until now there is not solution in general case. The inherent 

ambiguity of the correspondence problem can in practical 

cases be reduced using several constrains. A vast list of 

references about this task can be found in the [3].    

The geometric transformation that changes a general 

cameras configuration with non-parallel epipolar lines to the 

parallel ones is called image rectification. More deep 

explanation about computing the image rectification can be 

found out in [3].  

IV. ROBOT CALIBRATION USING COMPUTER VISION 

Measurement of robot manipulator end-effector pose (i.e., 

position and orientation) in the reference coordinate system is 

unquestionably the most critical step towards a successful 

open-loop robot calibration. A variety of measurement 

techniques ranging from coordinate measuring machines, 

proximity measuring systems, theodolites, and laser tracking 

interferometer systems to inexpensive customized fixtures 

have been employed for calibration tasks. These systems are 

very expensive, tedious to use or with low working volume 

[12], [18], [19]. In general, the measurement system should be 

 
Fig. 7.  The rectified configuration of two cameras. 

 
Fig. 8.  Top view of two cameras with parallel optical axes                  

rectified configuration. 



ELECTRONICS, VOL. 15, NO. 1, JUNE 2011 51

accurate, inexpensive and should be operated automatically. 

The goal is to minimize the calibration time and the robot 

unavailability. 

To overcome the above limitations, advances in robot 

calibration allow the start using a computer vision to calibrate 

a robot. Compared to those mechanical measuring devices, the 

camera system is low cost, fast, automated, user-friendly, non-

invasive and can provide high accuracy [20]. 

There are two types of setups for vision-based robot pose 

measurement. The first one is to fix cameras in the robot 

environment so that the cameras can see a calibration fixture 

mounted on the robot ende-ffector while the robot changes its 

configuration. The second typical setup is to mount a camera 

or a pair of cameras on the end-effector of the robot 

manipulator. 

The stationary camera configuration requires the use of 

stereo system placed at fixed location. It is not possible 

compute 3D scene point P position from only one projection p, 

on the camera plane.  The stereo system has to be placed in 

location that maintains necessary field-of-view overlap. The 

proper camera position needs to be selected empirically. The 

stereo system must be calibrated before manipulator 

calibration. The manipulator is placed in a number of 

configurations. From pair of images the location (position and 

orientation) of the calibration board is computed for every 

configuration (Fig. 9.). At the each configuration, geometric 

parameters are updated by adding ∆g (calculated in 

accordance with equation (9)) to the current value of g [21]. 

 

If it is enough to measure only the end-effector pose (usually 

tool’s tip) for robot calibration, then it is not necessary to use a 

calibration plate. In that case it is enough to place a marker on 

the end-effector of the manipulator. Tests were conducted with 

square markers. In this way the calibration of the manipulators, 

from the viewpoint of practical implementation, is simplified. 

Also, this is an important prerequisite for increasing the 

flexibility of the manipulators, because in the case of 

automatically interchangeable tools, a marker can be placed on 

the end-effector of the manipulator. Then, for any change of 

tools, by tracking the position of marker it is possible to 

accomplish the recalibration of the manipulator.  

The position of a marker (end-effector) is determined on the 

basis of pairs of images from stereo camera system [22]. Any 

point of the marker can be assumed as referent point of end-

effector of the manipulator. For this reason, hereinafter a term 

„marker” is considered as a whole, rather than a one specified 

point. In this case the main problem is the automatic detection 

of corresponding points. The corresponding points are 

represented by a set of marker points on both images. 

This paper uses algorithm based on the most similar 

intensity area correlation. The algorithm assumes that more 

pixels have similar intensity (color). Therefore, correlation of 

two pixels does not provide sufficient information because of 

the existence of more similar candidates. Thus, correlation of 

more adjacent pixels which are forming the window of hxw 

pixels is determined. When stereo system with parallel optical 

axes is used, the epipolar lines of both cameras lie on the same 

height on both images, as shown on Fig. 10. 

The algorithm principle is as follows. Window of hxw pixels 

is formed. The window central pixel represents the referent 

point on one of two images from stereo system (Ex. left 

image). This window is used as referent area to be searched on 

the second image (i.e. right image). On the second image the 

same size window is observed on the same height as on the 

first image. By changing window disparity d the second 

window is sliding along u axe. Measure of two windows 

intensity likelihood, i.e. cost function, is calculated as Sum of 

Squared Differences of all pixels intensities in both windows.  
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The value of disparity d, for which is obtained minimal 

value of cost function, gives the position of window which is 

the best correlated with the reference window. Therefore, the 

corresponding windows are on the same height on both 

images, but shifted along u axe for: 

 ( ) ( )dvucvudisparity ,,min, =  (27) 

For the purpose of calibration, stereo system with two 

standard web color cameras was used. The algorithm was 

tested with color marker placed on the end-effector of a 

modular Robix manipulator. Adopted window size is 5x5 

pixels. Fig. 11. and Fig. 12. present images from left and right 

cameras, respectively. A detail of marker found on the second 

image is shown on Fig. 12. Fig. 13. shows graphical 

representation of cost function for disparity change along 

epipolar line, from minimum to maximum value. It is obvious, 

as it shown on Fig. 13, that a reliable method of determining 

the corresponding points is obtained by using marker and                                                         

 
Fig. 9.  A manipulator calibration using stationary camera configuration. 

 
Fig. 10.  Windows position of two corresponding points. 
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selected cost function. Selected cost function has a pronounced 

global minimum. 

For successfully finding of corresponding points, choice of 

window size is crucial. In the classical problem of 

correspondence, if the window size is too small, it increases 

probability of occurrence of a large number of                             

candidates for correspondence.  

This increases probability of wrong selection of 

corresponding points. On the other hand, if the window size is 

too large, there is a possibility for error because of a constant 

value of disparity within the window. Therefore, there is no 

single recommendation for the best window size. In special 

cases, even an adaptive window size is suggested, but such 

algorithms are generally very complex, compute demanding 

and not widely accepted in practice. 

In accordance with previous demonstration, windows size 

will depend on the size of the marker when it is necessary to 

determine markers correspondence on two images. Marker is 

an area with nearly constant intensity (color). By adopting a 

window smaller than the marker, all the windows, which are 

contained in the marker, will be detected as candidates. Thus, 

there will be no single solution for the problem of 

correspondence. In another case, by adopting a window size 

larger than the size of marker, by increasing a size of window 

the value of cost function will not depend on the compliance of 

marker points. Value of the cost function will be influenced by 

compliance of region points out of marker. Therefore, it is 

reasonable assumption that the cost function will have less 

pronounced global minimum. Further augmentation of window 

size (relative to marker size) may produce error in 

correspondence estimation. Points surrounding marker will 

have significant influence on window correlation compared to 

marker points. Based on this analysis, it is concluded that the 

best results are achieved by adopting window size 

approximately equal to marker size. 

Assumptions about the window size effects (relative to 

marker size) on the reliability of the correspondence procedure 

have been tested in several cases. Window size has been 

altered for different marker sizes. Diagrams of minimum 

values change of cost functions with change of window size, 

for three different sizes of markers, are illustrated on Fig. 14. 

In order to compare results, values of cost functions, shown on 

diagrams, are divided with number of pixels that belongs to 

 
Fig. 11.  Image from left camera. 

 
Fig. 13.  Graphical representation of cost function for disparity change along 

epipolar line. 

Fig. 12.  Image from right camera. 

 
Fig. 14a.  Graphical representation of cost function for disparity change 

along epipolar line. 
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window. In this way, the cost functions represents the average 

inconsistency for every pixel of two windows. The first marker 

(Fig.14.a.) is the size of 11x11 pixels, the second marker 

(Fig.14.b) is the size of 21x21 pixels and a third marker 

(Fig.14.c) is the size of 37x37 pixels. The illustrations confirm  

that the best results are achieved by adopting that window size 

is equal to marker size. 

V. CONCLUSION 

An overview of new features for improving the calibration 

of industrial manipulators using visual systems is presented in 

this paper. The focus is on the stereo system with parallel 

optical axes. The practical aspects of using the algorithm based 

on area correlation are particulaty analyzed. In order to 

increase the reliability of the corresponding areas 

determination the next is proposed: set the marker on end-

effector of manipulator, choose the window size equal to 

marker size and scale cost function with total number of pixels 

for each window. Conducted experiments and shown 

illustrations confim that presented calibration method allows 

eficient and reliable manipulator calibration in standard 

conditions.  
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Fig. 14b.  Graphical representation of cost function for disparity change 

along epipolar line. 

Fig. 14c.  Graphical representation of cost function for disparity change 

along epipolar line. 


