
ELECTRONICS, VOL. 15, NO. 1, JUNE 2011 40 

  

Abstract—New general rules have been developed for 

designing complex controllers under constraints on robustness 

and sensitivity to measurement noise. The design is based on a 

compromise between robustness and performance. This solution 

makes possible obtaining practically realizable complex 

controllers. It is shown that the proposed method results into 

considerably better performance and robustness indices, 

compared to those obtained by the optimal PID controller.  

 

Index Terms—Complex controller, PID controller, 

Robustness, Frequency domain. 

I. INTRODUCTION 

HE paper presents general rules for designing a complex 
controller C(s), intended for the processes involving time 

delays and having an arbitrary order and multiple astaticism. 
The problem of control of complex processes (multiple 
instabilities, multiple astaticism, dominant time delay) cannot 
be solved adequately by applying PID controllers, which is the 
main reason for developing the methods for design of complex 
controllers. 

It is well known that about 94% of feedbacks in industry are 
realized by PI/PID controllers [1], while in petrochemical 
industry this percentage is 97% [2,3]. 

Owing to a high significance of PI/PID, very efficient and 
simple procedures for tuning parameters of industrial 
controllers have been developed [4,5,6] as well as 
optimization procedures [7-22] for designing PI/PID 
controllers so the IAE (Integral of Absolute Error) is 
minimized under constraints on robustness, which satisfies the 
criterion defined in [23]. 

In addition to the mentioned methods, there are methods for 
design of PID controllers which are based on the IMC 
(Internal Model Control) controller [24-26]. The IMC method 
of controller design contains one adjustable parameter λ 
which, for a narrow class of processes, has direct influence on 
the time constant of the closed loop system. 

 Response of a process regulated by applying an IMC 
method to a Heaviside-type disturbance is dependent on  the  
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dominant dynamics of the process. E.g., if a process is 
dominated by oscillatory dynamics, responses to any 
disturbance will be oscillatory. 

 For the purpose of accomplishing adequate indices of 
robustness and performance for a wider class of stable and 
unstable processes, new methods of designing complex 
controllers based on the modified IMC structure [27-29]  have 
been developed. However, the design rules for complex 
controllers by applying these methods have not been designed 
for the general form of transfer function of the process Gp(s), 
but only for certain classes of processes Gp(s) [27-29]. 

 Complex controller C(s) defined in this work is designed 
for the general form of transfer function of the process, given 
in a rational form including delay Gp(s)=H(s)exp(-τs)/Q(s) 
under constraints on robustness and sensitivity to 
measurement noise. 

 The adjustable parameters of the complex controller C(s) 
are the time constant λ and relative damping factor ζ of the 
dominant poles of the process in the closed loop with the 
complex controller C(s) [7]. By adjusting parameter ζ one can 
accomplish a compromise between the robustness and 
performance indices, which is not possible for complex 
controllers designed by IMC [24-26] or modified IMC [27-
289]. 

 The proposed complex controller C(s) is compared with 
the PID controller [7] through a series of simulations of a wide 
class of industrial processes. It is shown that the application of 
the proposed method results in considerably better indices of 
robustness and performance compared to those obtained with 
the method described in [7]. 

II. DESIGN OF THE COMPLEX CONTROLLER FOR A PROCESS 

HAVING TRANSFER FUNCTION GP(S) 

  The control structure involving complex controller C(s) 
is presented in Fig. 1 
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Fig. 1. The control structure. 
 

Frequency Domain Design of a Complex 
Controller under Constraints on Robustness and 

Sensitivity to Measurement Noise 

Tomislav B. Šekara, Miloš B. Trifunović and Vidan Govedarica 

T



ELECTRONICS, VOL. 15, NO. 1, JUNE 2011 41 

In general, p ( ) ( ) / ( )s
G s H s e Q s

τ−= , where Q(s) and H(s) are 

polynomials of the order deg ( ) deg ( )Q s n H s m= ≥ =  and 

H(0)=h0 ≠ 0. In order to facilitate the process of deriving, with 
no loss in generality, it is assumed that degH(s) = 0, i.e., 
H(s)=h0. The complementary sensitivity function of the 
controlled process Gp(s) of Fig.1 is given by relation 

p ( ) ( ) /(1 ( ))T s L s L s= + , with the feedback function of the 

form p( ) ( ) ( )L s C s G s= . Let the desired complementary 

sensitivity function T(s) be given by 
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with 2p n≥ , ,p n N∈ and adjustable parameters 0
k

λ > , 

1,k p= ,
j

Rη ∈ , 1,j n= , which are determined on the basis of 

the desired performance of the closed loop system. From 
relations (1), the controller C(s) of the process having transfer 
function Gp(s) resulting in maximum suppression of 
disturbance d or n is 

p 0

1 ( ) 1 ( ) ( )
( )

( ) 1 ( ) ( )

T s Q s N s
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G s T s h F s
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−
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where ( ) ( ) ( )s
F s P s e N s

τ−= − . 

  In general, parameters 1,
n

η η  are determined so that the 

poles of process Gp(s) are cancelled by the zeros of function 
F(s). Let the poles of process Gp(s) are: 1 2 ... 0

v
s s s= = = = , 

1 2 ... 0
v v v r

s s s+ + += = = ≠ , i.e. zeros of polynomial Q(s), of the 

order v and r. Let the remaining zeros of polynomial Q(s) 

1,
v r n

s s+ +  be simple, then parameters 1,
n

η η  are determined 

according to the following rules. 
 
Rule 1.  If the zeros of polynomial Q(s) are 

1 2 ... 0
v

s s s= = = = , parameters 1,
v

η η  are determined from  

condition 
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Rule 2.  If the zeros of polynomial Q(s) are 

1 2 ... 0
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s s s+ + += = = ≠ , parameters 1,
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Rule 3.  If the zeros of polynomial Q(s) are simple 1,
v r n

s s+ + , 

parameters 1,
v r n

η η+ +  are determined from condition 

( ) 0
v r js s

F s
+ +=

=  for 1,j n v r= − − . (5) 

Polynomial P(s) is usually taken in the form 

( ) ( 1) p
P s sλ= + . (6) 

For the purpose of achieving better compromise 
performance/robustness in this work a new form of 
polynomial P(s) is proposed 

2 2
1( ) ( 2 1)n

P s s sλ ζλ= + + , (1)Oζ ∈ , 1n ≥ . (7) 

Rule 4. If in Rule 2 or Rule 3 some of the zeros of polynomial 
Q(s) has a positive real part (unstable process), in controller 
(2) canceling of these zeros in the denominator and zeros in 
the numerator has to be carried out (elimination of dipoles). 
 
Remark 1. If degH(s) > 0, the relations given by (1) - (7) 
remain the same  and polynomial N(s) in (1) becomes 

1
1 1 0( ) ( ... 1) ( ) /n n

n n
N s s s s H s hη η η−

−= + + + + , h0 ≠ 0, (0) 1N = , 

  On the basis of (7), free parameters of the complex 
controller (2) are the time constant λ>0 and relative damping 
factor ζ>0 of the closed loop system, like in [7]. The damping 
factor which is introduced in the design of complex controller 
plays a significant role in accomplishing a compromise 
between the performance and robustness indices. It is shown 
later that through the damping factor one can exert influence 
upon sensitivity to measurement noise at high frequencies Mn 
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 In order to strike a compromise between desired 
performance IAE and Ms= max

ω
|1/(1+L(iω))|, time constant λ 

should satisfy condition 

p s
,

max 1/(1 (i ) (i ))C G M
ω λ

ω ω+ = . (9) 

For given ζ and Ms (9), time constant λ is determined by 
solving two nonlinear algebraic equations like in [7]. 

2 2
p s1 ( ) ( ) 1/ 0C i G i Mω ω+ − = , (10) 
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∂
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Initially, parameter ζ should be taken as ζ=1 and parameter λ 
close to the estimated transport delay. By determining time 
constant λ for different values of parameter ζ, one 
accomplishes a compromise between the values IAE, Mn and 
Mp. A comparison of the qualities of control for different 
values of parameter ζ is analyzed in detail in the next section. 

III. COMPARATIVE ANALYSIS AND SIMULATIONS 

 A comparison of the proposed method for design of 
controller C(s) (2) for different values of parameter ζ is given 
in Table 1 for sixteen representative typical dynamic 
characteristics:  
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The controllers for all processes except the unstable ones 
(Gp13(s), Gp14(s) i Gp15(s)) are of the form (2) with the 
corresponding parameters λ and ζ from Table 1. For unstable 
processes, on the basis of rule 4, in order to eliminate unstable 
dipoles of the controller, time delay  e-τs in polynomial F(s) is 
approximated by Pade approximation of the order N/N, where 
N is chosen so that the robustness and performance indices are 
preserved. For processes Gp14(s) and Gp15(s) it is sufficient to 
take N=2 
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i.e. N=3 for process Gp13(s) 
2 2 3 3

2 2 3 3
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E.g., on the basis of (1) – (7), general form of the controller 
(2) for unstable process Gp13(s) is  given by 
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For λ=2.335 and ζ=1 obtained on the basis of relations (9)-(11) 
and replacing transport delay e

-2s by approximation (13) for 
2τ =  one obtains the controller 
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and upon canceling the  dipole s≈ 0.25, the final transfer 
function of controller from Table 1 for process Gp13(s) is 

 
2
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By using the equivalent procedure, all other controllers of 
unstable processes have been determined, with approximation 
(12) applied for processes Gp14(s) and Gp15(s). 

In order to reduce the order of the controllers of stable 
processes obtained by applying rules 1 to 3, it is desirable to 
apply the described reduction by cancellation of dipoles. For 
stable processes having dominant delays, this reduction of 

TABLE I 
THE RESULTS OBTAINED BY THE PROPOSED METHOD FOR DIFFERENT VALUES 

OF PARAMETER Ζ OF CONTROLLER C(S), MS=CONST. 

Process λ  ζ  Mn IAE Ms Mp 
Gp1(s) 1.605 1.000 51.82 1.0767 2.00 1.56 
Gp1(s) 1.186 1.551 207.28 0.9846 2.00 1.33 
Gp1(s) 1.923 0.842 25.91 1.3320 2.00 1.65 
Gp2(s) 0.395 1.000 665.39 0.2213 2.00 1.59 
Gp2(s) 0.438 0.955 332.69 0.2963 2.00 1.56 
Gp2(s) 0.553 0.870 66.54 0.5627 2.00 1.49 
Gp3(s) 0.228 1.000 657.38 0.1152 2.00 1.60 
Gp3(s) 0.253 0.962 328.69 0.1576 2.00 1.57 
Gp3(s) 0.321 0.885 65.74 0.3052 2.00 1.48 
Gp4(s) 0.680 1.000 10.1 6.0813 2.00 1.01 
Gp4(s) 0.540 1.150 40.4 5.7267 2.00 1.01 
Gp4(s) 0.760 0.950 5.05 6.3336 2.00 1.00 
Gp5(s) 0.730 1.000 6.557 2.6549 2.00 1.11 
Gp5(s) 0.580 1.250 26.228 2.6006 2.00 1.02 
Gp5(s) 0.800 0.935 3.278 2.7663 2.00 1.13 
Gp6(s) 0.061 1.000 176.95 0.0115 2.00 1.72 
Gp6(s) 0.070 0.965 88.47 0.0171 2.00 1.70 
Gp6(s) 0.091 0.932 17.69 0.0384 2.00 1.62 
Gp7(s) 3.200 1.000 28.26 4.5657 2.00 1.29 
Gp7(s) 2.576 1.250 113.04 4.0419 2.00 1.17 
Gp7(s) 3.591 0.915 14.13 5.1513 2.00 1.32 
Gp8(s) 19.00 1.000 7466 1.3675 2.00 1.96 
Gp8(s) 26.76 0.910 746.6 8.4579 2.00 1.76 
Gp8(s) 35.91 0.845 74.66 31.201 2.00 1.51 
Gp9(s) 0.735 1.000 9.86 4.5654 2.00 1.14 
Gp9(s) 0.599 1.800 39.44 6.9967 2.00 1.04 
Gp9(s) 0.807 0.710 4.93 4.0345 2.00 1.18 
Gp10(s) 0.628 1.000 4.45 1.1480 2.00 1.50 
Gp10(s) 0.625 1.550 6.23 1.4792 2.00 1.31 
Gp10(s) 0.674 0.700 2.225 1.1486 2.00 1.71 
Gp11(s) 1.250 1.000 6.44 6.0566 2.00 1.68 
Gp11(s) 1.130 1.780 19.32 9.8390 2.00 1.24 
Gp11(s) 1.507 0.830 3.22 7.7678 2.00 1.80 
Gp12(s) 0.670 1.000 58.64 2.4653 2.00 1.66 
Gp12(s) 0.536 0.980 29.32 3.5307 2.00 1.67 
Gp12(s) 0.748 1.060 234.56 1.1935 2.00 1.68 
Gp13(s) 2.335 1.000 2.30 23.4905 3.00 2.73 
Gp13(s) 2.510 1.200 2.40 28.3920 3.00 2.54 
Gp13(s) 2.485 0.880 2.00 24.0484 3.00 2.87 
Gp14(s) 1.200 1.00 12.77 2.8845 2.60 2.41 
Gp14(s) 1.408 1.01 51.08 1.1734 2.60 2.29 
Gp14(s) 1.407 1.04 6.385 4.9374 2.60 2.54 
Gp15(s) 0.400 1.00 947.0 0.9270 5.90 6.60 
Gp15(s) 0.459 1.05 735.4 1.7591 5.90 6.70 
Gp15(s) 0.623 1.23 474.5 8.0659 5.90 6.88 
Gp16(s) 1.820 1.00 4.04 231.30 3.00 2.99 
Gp16(s) 1.260 1.12 16.16 74.089 3.00 2.85 
Gp16(s) 1.006 1.23 40.4 39.553 3.00 2.75 

 
a complex controller may lead to degradation of the robustness 
and performance indices, thus this reduction is not 
recommendable. Such an example is process Gp4(s). 
 From Table 1 it is clear that for all processes Gpj(s), 
j=1,...16, when applying C(s) for the same Ms, the adjustable 
parameter ζ  allows accomplishing a compromise between 
IAE, Mn, and Mp. This parameter is of key significance, since 
by its use one can decrease or increase value of Mn and 
improve the robustness and performance indices (Figs. 2 
and 3). 



ELECTRONICS, VOL. 15, NO. 1, JUNE 2011 43 

p11

1.6( 0.5 1)
( )

(3 1)

s
G s

s s

− − +
=

+

 

Fig. 2 Response to a Heaviside-type disturbance of process Gp11(s) in closed 
loop with controller C(s) for Ms=2. 

 
 The proposed method for design of the complex controller C(s) (2) 
will be compared to the PID controller [7], which, as has been shown 
in [7], accomplished the robustness and performance indices the same 
as the optimal PID [21]. The comparison of these methods, assuming 
the same values of Ms and Mn, is presented in table 2 for the 
processes Gpj(s), j=1,..16. 
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Fig. 3 Response to a Heaviside-type disturbance of process Gp11(s) in closed 
loop with controller C(s) for Ms=2.6. 

 
In Table 2, parameter ζ for all complex controllers has been 

determined so that practically the same value of Mn as in the 
case of the PID controller is obtained. It can also be seen from 
Table 1 that the complex controller ensures a considerably 
better quality of control compared to that of the PID 
controller. 

The following figures show the response to a Heaviside 
type of disturbance of the complex controller C(s) and PID 
controller [7]. 

 From Figs. 4-7 it is obvious that application of the 
complex controller results in a significantly lower IAE, with 
practically the same robustness as the one obtained with the 
PID controller. For unstable processes the complex controller 
gives considerably higher indices of robustness and 
performance compared to those of the PID controller. It 
should be mentioned that for the processes of higher order of 
instability and astaticism, complex controllers can be 
successfully designed as demonstrated with processes Gp15(s) 
and Gp16(s). 
 

TABLE II 
THE COMPARISON OF THE METHOD PROPOSED FOR COMPLEX CONTROLLER 

C(S) WITH THE OPTIMALLY TUNED PID CONTROLLER [7] 
Process-
controller 

λ ζ Mn IAE Ms Mp 

Gp1(s)-C 1.5205 1.06 64.42 1.02 2.00 1.53 
Gp1(s)-PIDtun 1.8989 0.80 64.42 1.17 2.00 1.72 
Gp2(s)-C 0.6300 0.825 26.16 0.78 2.00 1.41 
Gp2(s)-PIDtun 1.0825 0.75 26.16 1.28 2.00 1.37 
Gp3(s)-C 0.3567 0.855 31.41 0.40 2.00 1.44 
Gp3(s)-PIDtun 0.6343 0.75 31.41 0.66 2.00 1.41 
Gp4(s)-C 0.9294 0.86 1.55 6.83 2.01 1.01 
Gp4(s)-PIDtun 2.5242 0.85 1.55 8.31 2.01 1.02 
Gp5(s)-C 0.7023 1.035 8.27 2.65 2.00 1.09 
Gp5(s)-PIDtun 1.0427 0.80 8.27 2.82 2.00 1.16 
Gp6(s)-C 0.0559 1.025 265.6 0.091 2.00 1.72 
Gp6(s)-PIDtun 0.0863 0.80 265.6 0.013 1.98 1.80 
Gp7(s)-C 3.2040 0.995 27.91 4.54 2.00 1.30 
Gp7(s)-PIDtun 5.0863 0.80 27.91 5.70 2.00 1.36 
Gp8(s)-C 40.3684 0.82 26.63 48.73 2.00 1.44 
Gp8(s)-PIDtun 72.3427 0.75 26.63 85.31 2.00 1.37 
Gp9(s)-C 0.8790 0.65 3.18 4.58 1.80 1.00 
Gp9(s)-PIDtun 1.1113 0.65 3.18 6.60 2.00 1.01 
Gp10(s)-C 0.6280 1.00 4.45 1.14 2.00 1.50 
Gp10(s)-PIDtun 0.3605 1.10 11.92 1.24 2.00 1.54 
Gp11(s)-C 1.1248 1.24 11.22 6.122 2.00 1.52 
Gp11(s)-PIDtun 1.1422 0.85 11.22 4.16 1.98 1.85 
Gp12(s)-C 0.9626 0.955 5.91 7.923 2.00 1.62 
Gp12(s)-PIDtun 1.9054 0.85 5.91 14.27 2.00 1.62 
Gp13(s)-C 1.8621 0.75 2.41 16.21 3.50 3.27 
Gp13(s)-PIDtun 1.6160 0.85 2.41 26.21 4.00 3.52 
Gp14(s)-C 1.0241 0.88 20.57 1.49 2.99 2.66 
Gp14(s)-PIDtun 1.8540 0.80 20.57 2.90 2.99 2.78 
Gp15(s)-C 0.6234 1.23 473.5 7.79 5.90 6.90 
Gp15(s)-PIDtun - - - - - - 
Gp16(s)-C 1.0057 1.23 40.15 39.55 3.00 2.75 
Gp16(s)-PIDtun - - - - - - 
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Fig. 4 Response to a Heaviside-type disturbance of process Gp4(s) in closed 
loop with controllers from Table 2 for Ms=2, Mn=8.27. 
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Fig. 5 Response to a Heaviside-type disturbance of process Gp9(s) in closed 
loop with controllers from Table 2 for Ms=2, Mn=3.18. 
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Fig. 6 Response to a Heaviside-type disturbance of process Gp12(s) in closed 
loop with controllers from Table 2 for Ms=2, Mn=5.91. 
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Fig. 7 Response to a Heaviside-type disturbance of process Gp13(s) in closed 
loop with controllers from Table 2 for Mn=2.41. 

IV. THE CONCLUSION 

Design of complex controllers is aimed at increasing the 
robustness and performance indices compared to those 
obtainable with conventional controllers. For designing 
complex controllers an adequate knowledge of transfer 
function of the process is required. The paper presents general 
rules for designing complex controllers which have been 
tested on a wide class of processes. By applying suitable 
approximations of complex controllers, adequate conventional 
controllers are obtained for certain class of processes. The 
comparative analysis and simulations gave the expected 
results. 
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