
ELECTRONICS, VOL. 15, NO. 1, JUNE 2011 

 

 

30

  

Abstract—This paper deals with the problem of the shaft speed 

estimation in a digitally controlled DC servo drive. Some different 

observer structures are presented and compared. The developed 

extended observers enable proper estimation of the plant state 

variables, even under the action of a constant or slow varying 

load torque disturbance.  Two useful procedures for the 

adjustment of observer gains are proposed and verified by both 

numerical simulations and real-time experimental results. 

 
Index Terms—Shaft speed estimation, Extended observer, 

Digitally controlled DC servo drive. 

 

I. INTRODUCTION 

igh-performance servo drives are required in many 

applications of digitally controlled machines. Two types 

of position sensors are most frequently applied: optical 

encoders (absolute or incremental), and electromagnetic 

resolvers (inherently absolute) [1], [2]. The transducer output 

signal is used as the position feedback signal in a position-

controlled system; consequently, the signal in the inner 

velocity loop must be estimated. In speed-controlled high-

performance servo drives, the feedback velocity signal is to be 

estimated from the torque command and measured angular 

position of the motor shaft, in the presence of the quantization 

noise and a constant or slow varying load torque disturbance. 

In order to obtain smooth and sufficiently accurate position 

and speed signals, the observer structure is often implemented. 

This paper deals with the analysis and design of a dynamic 

system that is able to estimate state variables (position and 

speed signals) in an environment where the shaft position 

information is incomplete due to a limited resolution of the 

position transducer, even in the presence of a constant load 

torque disturbance. After comparing several different methods 

of velocity estimation, in this paper a novel approach to the 

extending of the discrete-time observer is proposed. 

This paper is organized as follows. The problem 

formulation is given in Section II. Section III presents the 

design procedures of the observers extended by using the 

additionally introduced integral terms in a digitally controlled 
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servo drive. Procedures for calculating the observer gains are 

given in Section IV. Section V gives a concrete example to 

demonstrate the effectiveness of the proposed observers. 

Finally, Section VI presents the concluding remarks.   

II. PROBLEM FORMULATION 

In all cases, no matter what type of sensor is utilized in the 

digitally controlled servo system, the shaft position is read as a 

digital signal. Hence, the resolution of the shaft position 

measurement is limited. Due to the finite resolution, the actual 

shaft position differs from the digital word representing the 

position (lower resolution - the larger difference). 

To estimate velocity signal, the least complicated algorithm 

yields 

( ) ( )
ˆ ( )

k k n
k

nT

θ − θ −
ω = , (1) 

where T  is sampling period, θ  is the angular position of drive 

shaft, k  is the sample number index, and integer 1n ≥ . By 

setting n = 1  the average velocity over the preceding sampling 

interval is estimated as the well-known Euler’s approximation 

of the derivative, that is a simple first difference. Note that the 

velocity resolution is limited directly by the transducer 

resolution and the time interval nT . 

Due to the finite resolution of the angle measurement, the 

shaft speed signals estimated by (1) would be highly 

contaminated by the quantization noise. In order to improve 

the quality of the shaft velocity estimation, an observer 

structure is often implemented. Besides enabling an accurate 

state estimation of the control object, the applied observer can 

be used also for filtering the measurement noise.  

Consider the discrete-time model of the plant 

( 1) ( ) ( ) ( ) ( )

( ) ( ) ( )

k T k T k

k k k

+ = +

= +

x E x F u

c Dx Hu
 (2) 

where ( ) ( ) nk kT= ∈x x �  is the state vector to be observed, 

( ) ( ) rk kT= ∈u u � and  ( ) ( ) mk kT= ∈c c �  are known control 

input vector and output vector, respectively. The sampling 

interval is T . Constant matrices E , F , D  and H  have 

appropriate dimensions; the pair ( ),E F  is controllable and the 

pair ( ),E D  is observable. 

The observer or asymptotic state estimator is a dynamic 
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system, with inputs ( )ku , ( )kc  and output ˆ ( )kx , having the 

property lim ( )
k

k
→∞

=x 0� , where   

ˆ( ) ( ) ( )k k k= −x x x�  (3) 

is the estimation error.  

The system plant and the associate observer are shown in 

Fig. 1. We adopt the notation 

( ) :z
 

=  
  

E F
G

D H
  . (4) 

where  

( ) 1
( )G z z

−
= − +D I E F H ,   z − complex variable, (5) 

is the transfer function matrix derived from (2).  

The state variables reconstructed by the observer can be 

used by the control law 

ˆ( ) ( )k k= −u K x . (6) 

Notice that the observer has a special structure 

[ ]

0

ˆ ˆ ˆ( 1) ( ) ( ) { ( ) ( ) ( ) }

ˆ( ) ( ) .

estimate of  output

apriori estimate output estimation error

k k k k k k

k k

+ = + + − +

=

x Ex Fu G c Dx Hu

x x

�������

����������	 ����������	       (7) 

In order to obtain a state-space description for the system in 

Fig. 1 supplemented with the state feedback (6), we define the 

state vector to be [ ]T( ) ( )k kx x� , giving the equation for the 

closed-loop regulator system as follows 

 

( 1) ( )

( 1) ( )

k k

k k

+ −     
=     + −     

c

x E FK FK x

x 0 E GD x

E

� �
��������	

    . (8) 

Because the matrix cE  is block upper-triangular, its 

eigenvalues are just the eigenvalues of the diagonal blocks.  

Thus we have that 

( ) ( ) ( )eig eig eig= − ∪ −cE E FK E GD , (9) 

where the symbol ∪  denotes the union. Equation (9) is known 

as the separation principle, which refers to the fact that the 

state feedback vector and the observer gains vector can be 

calculated separately [3]-[5].  

In the case =H 0  we can rewrite (7) as follows 

( )ˆ ˆ( 1) ( ) ( ) ( )k k k k+ = − + +x E GD x Fu Gc , (10) 

where all state values are estimated with the resolution limited 

only by the word length of the digital controller. The observer 

gain matrix G  in (7) is to be determined according to 

requirements for the desired speed of estimation.  

Recall, for the sake of simplicity, instead of identity 

observer, the reduced-order one is proposed to estimate only 

the unmeasured states. In the case of reduced-order observer 

design, the object model, like (2), becomes 

[ ]

( 1) ( )
( )

( 1) ( )

( )
( ) ,

( )

a aa ab a a

b ba bb b b

a

b

k k
k

k k

k
k

k

+       
= +       +       

 
=  

 

x E E x F
u

x E E x F

x
c I 0

x

 (11) 

where ( )a kx  is the state vector portion directly measured, and 

( )b kx is the remaining portion to be estimated. Then the 

observer model takes the form as follows [3], [4]  

( ) ( )

( )

ˆ ˆ( 1) ( ) ( )

( 1) ( ) .

b bb ab b ba aa

b a

k k k

k k

+ = − + −

+ + + −

x E GE x E GE c

Gc F GF u
 

 (12) 

As it is well known, in the presence of constant or slow 

varying disturbances that may not be considered as state 

disturbances, both the identity observer (10) and the reduced-

order observer (12) are not able to estimate the proper values 

of the state variables. Some modifications, that are based on 

the special extending the standard observer structures with the 

integral action [6]-[11], provide the correct estimation even 

under the disturbance action. 

III. POSITION AND VELOCITY OBSERVATION IN A DIGITALLY 

CONTROLLED SERVO DRIVE 

By assuming the state vector as [ ]( ) ( ) ( )k k k= θ ωx
T

, where 

( )kθ  and ( )kω  are the shaft angular position and speed 

respectively, the state-space model of the object in Fig. 2  

becomes 

( 1) ( ) ( ) ( ) ( )

( ) ( )

k T k T u k

c k k

+ = +

=

x E x f

dx
 (13) 

with  

( ) 1

2

1 1 e 1
( ) ,

0
0 e

m

m

T T
m

T T

T
T

e
e

−

−

 −   = =     

E  

 (14) 

( )
( )

[ ]1

2

e
( ) =    and    1 0 .

1 e

m

m

T T
m m m

T T
m

K T T T
T

K

f

f

−

−

 + −   = =  −    

f d  

 

In above equations mK  and mT  are the gain factor and the 

mechanical time constant of the considered drive, respectively. 

 

Fig. 1. Control Object and Observer. 
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The observer that joins the drive in Fig. 2 estimates the 

states 1( )x k  and 2 ( )x k  by using the control variable ( )u k  and 

measured output ( )kθ  as inputs. Equations (10) and (12) of 

the ordinary identity observer and the reduced-order observer 

can be rewritten as 

1 1 1 1 1 1

2 2 2 2 2 2

ˆ ˆ( 1) 1 ( )
( ) ( ) 

ˆ ˆ( 1) ( )

x k g e x k f g
u k c k

x k g e x k f g

+ −         
= + +         + −         

 (15) 

and 

( )

( )
2 2 2 1 2 2 2

2 2 1

ˆ ˆ( 1) ( ) ( 1) ( )

( ) .

x k e g e x k g c k g c k

f g f u k

+ = − + + −

+ −
 

 (16) 

In numerous applications, as in robotics for example, the 

employed observer must enable the estimation of the plant 

state variables even under the action of the constant 

(gravitation) or a slow varying load torque disturbance L ( )T k . 

As it is well known [3], in the presence of such disturbances, 

that may not be considered as initial state disturbances, the 

ordinary observers (full or reduced-order) are not able to 

estimate the state variables. 

 For proper state estimation, the possibility of extending the 

ordinary discrete-time observer with additional integrators is 

discussed. The solution consists in the following: the observer 

gains multiply the generated errors of the state variables 

ˆ( ) ( )i i ix x k x k= −� , 1, 2i = ; the errors of position and velocity 

estimation are simultaneously processed through two discrete 

integrators assuring the zero steady-state estimation errors in 

the presence of a constant load torque disturbance LT . 

It is possible to choose the estimates of new state variables 

3ˆ ( )x k  and 4ˆ ( )x k  to be the outputs of the inserted integrators 

resulting in the following discrete-time new state equations [7] 

[ ]3 3 3 1 3 1 3 3ˆ ˆ ˆ ˆ ˆ( 1) ( ) ( ) ( ) ( ) ( ) ( )x k x k g c k x k g x k x k g c k+ = + − = − + +  

 (17) 

and  

4 4 4 2

4 4
4 2 4

( ) ( 1)
ˆ ˆ( 1) ( ) ( )

ˆ( ) ( ) ( ) ( 1) .

c k c k
x k x k g x k

T

g g
g x k x k c k c k

T T

− − 
+ = + − 

 

= − + + − −






 (18) 

 

 After adding new state variables 3ˆ ( )x k  and 4ˆ ( )x k into 

state vector to be observed  ˆ ˆˆ( ) ( ) ( )k k k = θ ω x
T

, the vector 

difference equation of the identity observer (15) extended in 

the previously described manner becomes 

 

( )e e e1 e e e e2
( )

ˆ ˆ( 1) ( ) ( )
( 1)
c k

k k u k
c k
 + = − + +
 − 

x E G D x f G ,  (19) 

where 

1

2
e 3 e

4

1 1 0
( 1)

0 0 1
ˆ ( 1) ( 1) , ,

0 0 1 0
( 1)

0 0 0 1

e
k

e
k x k

x k

 
+   

 + = + =  
 +   

 

x
x E








 

1

2
e e

1 0 0 0
, ,

0 1 0 00
0

f

f
 
   = =     
 

f D  (20)  

1

2
e1 e2 e1

3

4

0

0 0 0
, and .

0 1 1

0

g

g

g T T

g

 
   = =   −  
 

G G G  

 

Certainly, the described proportional double-integral 

observer (PI
2
O) to be devised by using two additionally 

introduced integral terms of the output estimation errors can 

offer some degrees of freedom in the observer design. 

In the case of the reduced-order observer we must return to 

(16) and introduce a new state variable 4ˆ ( )x k  as the output of 

the discrete integrator by which the observer is extended. In 

such a way obtained the reduced-order proportional integral 

observer (PIO) is described by the following equations: 

 

( )

[ ]
2 2 2 1 2 4

2 1 2

ˆ ˆ ˆ( 1) ( ) ( )

( 1) ( ) ( ) ( )

x k e g e x k x k

g c k c k f u k f u k

+ = − +

+ + − − +
 

 (21) 

[ ]4
4 4 2 4ˆ ˆ ˆ( 1) ( ) ( ) ( ) ( 1)

g
x k g x k x k c k c k

T
+ = − + + − −    . 

  

IV. PROCEDURES FOR CALCULATING THE OBSERVER GAINS 

A. A Procedure for Parameter Adjustment of Reduced -

Order PI Observer 

Recall, the unmeasured velocity variable can be proper 

estimated by the reduced-order PI observer even in the 

presence of constant or slow varying load torque disturbance 

 

 
Fig. 2.  Block diagram of a drive with observer. 
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LT  acting on the drive of the system given in Fig. 2. The 

observer equations (21) can be rewritten in the form as 

 

2 2 2 1 2

44 4

2 1 2

4

ˆ ˆ( 1) 1 ( )
ˆ ˆ1( 1) ( )

0 ( 1) ( ) ( )
( ) .

0 ( ) ( 1) 0

x k e g e x k
gx k x k

g c k c k f u k f
u k

g c k T c k T

+ −    =    −+     
+ − −     + +     − −    

  

 (22) 

The observer gains 2g  and 4g  are calculated according to 

the desired quality and speed of state estimation. The 

parameter setting may be conveniently performed assuming 

both observer poles to be the same and equal to  

0exp( 2 )z f Tσ = − π ,  (23) 

where 0f  denotes the observer bandwidth. Thus the 

characteristic equation of the extended observer given by (22) 

is  

2 2 1

4

1
det 0

1
z e g e

g z
− + −  =

 − 
 . (24) 

The desired characteristic equation, founded by multiplying 

out the observer poles, becomes 

( )2 2 2
2 0z z zz z z− σ = − σ + σ = . (25) 

Hence, the simple relations, obtained by matching 

coefficients of like powers of  z   in (24) and (25), yield two 

unknown gains of PI observer as follows 

2 2 1
2

4

(1 2 )

(1 ) .

z

z

g e e

g

= + − σ

= − σ
 (26) 

B. A Procedure for Adjustment of PI
2
 Observer Parameters 

Let us denote by 

( ) 4 3 2
o e e1 e 3 2 1 0det 0z z a z a z a z a ∆ = − − = + + + + = I E G D  

 (27) 

the characteristic equation of the extended identity observer, 

whose model is given by (19)-(20), and may be written in the 

form  

1 1 1 1

2 2 2 2

3 3 3

4 4 4

1 1

2 2

3

4 4

( 1) 1 1 0 ( )
( 1) 0 1 ( )

( 1) 0 1 0 ( )

( 1) 0 0 1 ( )

0
( )

0
( ) .

0 0
( 1)

0

x k g e x k

x k g e x k

x k g x k

x k g x k

f g
u k

f g
c k

g
c k

g T g T

+ −     
     + −

=     + −
     + −     

 
  
 +  
 −   − 


 


 



 



 


 

 (28) 

The observer gain matrix e1G  in (20) is calculated 

according to the desired observer pole spectrum determining 

the speed of convergence between the state of the system and 

the state estimated by the observer. The setting of gains 

, 1, 2,3,4ig i =  may be conveniently performed assuming all 

observer poles to be the same and equal to 0exp( 2 )z f Tσ = − π , 

where 0f  denotes the observer bandwidth, as in (23). 

Therefore, the observer gains are calculated from 

( )
1 1

42 2

3

4

1 1 0

0 1
det

0 1 0

0 0 1

z

z g e

g z e
z

g z

g z

− + − − 
 − −

= − σ −
 − 

  . (29) 

Finally, after equating coefficients of like powers of z , the 

following relationships may be written  

( )( )
( ) ( ) ( )

( )

1 2
2

1 2 3 4 2 2
3

2 3 2 4
4

3 4

3 4

3 6 4 2

1 3 4 4 1

1          .

z

z z

z z

z

g e

e g g g e e

e g e g

g g

= − σ +

+ + = + σ + − σ +

− + + − σ = − σ

= − σ

  

 (30) 

V. ILLUSTRATIVE EXAMPLE 

In this section an example of shaft velocity estimation in a 

low power DC motor servomechanism is presented. The 

desired quality of the transient response of the considered 

system is matched by the conventional controller whose 

parameters are calculated by using the standard pole placement 

method. In view of the fact that it is well-known from classical 

control theory, the design procedure of the controller is not 

explained in detail. The experimental setup described in this 

section has been built to demonstrate proper estimation of the 

plant state variables, even in the case of the actions of constant 

or slow varying load torque disturbances. The simulation 

results of the proposed observers studied in the previous 

section are compared with the experimental ones. The goal is 

to illustrate that in all cases the estimated and the 

experimentally obtained results are good matched. 

A.  The Experimental Setup  

Fig. 3 visualizes the structure of the experimental 

environment for rapid control prototyping that was realized 

during the PhD thesis research in Control Engineering 

Laboratory at the University of Niš, Faculty of Electronic 

Engineering [12]. The experimental setup of the servo system 

consists of several functional elements as follows: 1. DC motor 

with incremental encoder, 2. Personal computer upgraded to a 

powerful development system for rapid control prototyping,  3.  

Led panel for signal connection,  4.  PWM power amplifier, 

and  5.  Power supply.  

As control object, a DC motor Type Bautz E586MGB is 

used with the following rating [12]: max   0.22 NmM = , 

max = 3.7 AI , -1
max =6000minn , the voltage constant 

-1=5.85 V/1000minek , the torque constant 0.056 Nm/Atk = .  
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For the position measurement ( )tθ  the quadrature 

incremental encoder with 1000  lines is used. The observer-

based control algorithms are implemented by using the 

dSPACE system [13]. Namely, as a standard PC card, 

dSPACE DS1104 R&D Controller Board is slotted into PC 

using 5 V  PCI bus as a backplane, upgrading in that way the 

personal computer to a powerful development system for rapid 

control prototyping.  

The controller board is based on the Motorola 32-bit 

floating-point MPC 8240 processor with 250 MHz  CPU, and 

contains all the necessary peripherals for AC and DC motor 

control in various fields. Moreover, because of demanding I/O 

operation, a slave DSP subsystem based on the Texas 

Instruments TMS320F240 16-bit fixed point digital signal 

processor with 20 MHz clock frequency is provided. Led 

panel CLP1104 indicates the status of the board's digital 

signals. Interfacing the computer DS1104 controller board 

with the control object input and output, as well as indication 

the status of the board's digital signals is possible through the 

LED panel CLP1104.  

Using the information related to the measured angular 

position of the motor shaft ( )tθ  and the reference signal 

r ( )tθ , the dSPACE system generates, based on the 

implemented control algorithm, a control signal which after 

PWM power amplifier with the carrier frequency of 

15 kHz produces a voltage to the motor. 

dSPACE Prototyper is a flexible development system that 

enables rapid control design of the real controlled system 

without manual programming. Namely, the dSPACE Real-

Time Interface allows to implement the considered 

MATLAB
®
/Simulink model onto dSPACE hardware via code 

generated by Real-Time Workshop automatically. This 

software offers an application that makes observation of the 

processed variables in real time possible. 

 

 

B.  Simulation and Experimental Results  

In this section the simulation and experimental results for 

the observers studied in the previous section are presented. To 

verify the usefulness of suggested procedures for setting of 

observer gains, ensuring the proper speed estimation of the 

drive given in Fig. 3, the system simulation has been carried 

out in all details, taking into account the limited resolution (the 

increment of 2 / 4000 radπ ) of position sensor. 

The electrical subsystem dynamics of the motor and the 

inertial dynamics of the power amplifier can be neglected. The 

plant in this example is a type-1 servo with transfer function 

from input current to output angular position as follows 

p ( )
( 1)

m

m

K
G s

s T s
=

+
 . (31) 

The motor's gain factor 24.8mK =  and the mechanical time 

constant 0.0379 smT =  are computed on the basis of the 

experimentally recorded open-loop step response given in   

Fig. 4. Note, that due to the finite resolution of angle 

measurement, the shaft speed signals estimated by (1), are 

contaminated by the quantization noise, especially in the case 

1n = . 

The sampling period 0.001 sT =  was adopted. The speed of 

continuous-time closed-loop system response and stability 

margin are specified by the dominant pole pair (the damping 

ratio 0.707ζ = , and the natural frequency 10 rad/snω = ) 

located in Nyquist frequency region. The desired quality of 

transient response is matched by the gains of the position PI 

regulator 0.52024pK =  and 0.0012885IK = . 

According to relations (15) and (16), the gains of the 

ordinary identity and the reduced-order digital observers were 

adjusted to values given in Table I, insuring the bandwidth of 

4.5 Hz and proper speed estimation. Also, the gains for both 

digital reduced-order PI observer and full-order PI
2
 observer 

 

 

Fig. 3.  Experimental setup [12]. 
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were set according to relations (26) and (30) to values given in 

Table I, providing the same transient behavior.  

In the simulations, as well as in the experiment the system 

was excited by the step reference signal 

ref ( ) 10h( 2) radt tθ = − , and by the external disturbance over 

the period 6 to 10 seconds. The disturbance was a constant 

load torque L 0.1 NmT = , which is 53%  of the rated torque. 

During the control object modeling the electrical time constant 

was neglected, and the effect of disturbance can be mapped 

onto the object input, and presented by the appropriate voltage 

signal o 3.82 VM ∗ = which acts inside the control channel.  

Figs. 5-7 and Figs. 8-10 compare experimental versus full-

model simulation results for both the reduced-order observer 

and the identity observer, respectively. These results show a 

remarkable agreement between the simulated and measured 

quantities of the considered system.  

Note that the control object is low power DC motor with 

some dry friction problems which are especially expressive in 

the case of different positioning tasks.  

The results presented in Figs. 5-7 indicate that under 

relatively unfavorable real conditions the proper shaft speed 

estimation can be provided by using the reduced-order PI 

observer whose setting is proposed in the previous section. 

The same conclusion can be drawn about the full-order PI
2
 

observer from the results given in Figs. 8-10. 

Some differences between simulation and experimental 

results, and the presence of the observation errors, shown in 

Fig. 11, are caused by the final resolution of the applied 

encoder, the quantization noise of the digital hardware, as well 

as by the unmodeled dynamics.     

  

TABLE I 

OBSERVERS SETTING 

Type of 

Observer Structure 

Observer Gains 

1g  2g  3g  4g  

Identity Observer  0.0301626 0.00659052 - - 

PI2 Observer  0.0853859 0.92137800 0.000762402 0.000762402 

Reduced-Order Observer - 2.58350000 - - 

PI Observer - 30.5470000 - 0.000762402 

 

 
Fig. 4.  (a)  Open-loop step response ( )tθ ; (b) Estimate of shaft speed ˆ ( )tω  derived by Euler’s approximation of the derivative; (c)  Estimate of shaft speed 

ˆ ( )tω  derived by simple algorithm (1) and 5n = . 



ELECTRONICS, VOL. 15, NO. 1, JUNE 2011 

 

36

 

 

 

 

 
                  (a) 

 
                                                     (b) 

Fig. 5.  True and estimation values of the shaft speed using reduced-order observer (16) and reduced-order PI observer (22)  (a) simulation, (b) experiment. 

 
                                                                   (a) 

 
                                                     (b) 

Fig. 6. Reference position ( )r , step response of shaft position ( )θ  and  on the plant input mapped load torque ( )*

OM  (a) simulation, (b) experiment. 

 
                                                                      (a) 

 
                                                    (b) 

Fig. 7. Control signal in system with reduced-order observers (a) simulation, (b) experiment. 
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               (a) 

 
                                                           (b) 

Fig. 8.  True and estimation values of the shaft position using identity observer (15) and PI2 observer (28)   (a) simulation, (b) experiment. 

 
                                                                   (a) 

 
                                                     (b) 

Fig. 9. True and estimation values of the shaft speed using identity observer (15) and PI2 observer (28)   (a) simulation, (b) experiment. 

 
                                                                      (a) 

 
                                                    (b) 

Fig. 10. Control signal in system with full-order observers (a) simulation, (b) experiment. 
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Although a perfect observation paradigm cannot be 

obtained, the proposed algorithms can effectively control the 

estimation errors of system states even in the presence of 

external disturbances. 

 

VI.  CONCLUSION 

The aim of this paper is to consider the possibility of using 

the ordinary discrete-time observers full and reduced-order, 

and their modifications called PI
2
 and PI observer for proper 

speed estimation in the case of the constant or slow varying 

load torque disturbances. For gain adjustment of observers 

extended with integral actions the suitable simple procedures 

are proposed. Simulation results, as well as the real-time 

experimental results validate the superior performances of the 

proposed new state observer structures.  
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