
ELECTRONICS, VOL. 15, NO. 1, JUNE 2011 

 

24

  

Abstract—A convex optimization-based robust RST controller 

design approach is proposed in this paper. It is shown that the 

system specifications given as the Nyquist robust stability criteria, 

absorption of effects for different types of external disturbances 

and the pole placement problem for LTI systems can be 

transformed into convex constraints. The controller design 

problem is then reduced to solving the standard quadratically-

constrained convex program. The analysis also illustrates the 

potential limitations of the method through inherent tradeoff 

between robustness stability and performance specifications. The 

design procedure is illustrated on a practical industrial problem, 

showing that the proposed method can provide very robust 

solutions with good performance. 

 
Index Terms—Control design, Digital control, Optimization  

 

I. INTRODUCTION 

eneral procedure to design and tune a good controller is 

[1]: I) To specify the desired control-loop performances; 

II) To obtain a dynamic model of the plant to be controlled 

(e.g. from real data by identification); III) To develop a 

suitable controller design methodology, compatible with the 

desired performances and the corresponding plant model; IV) 

To have a procedure for controller validation and onsite re-

tuning; V) To develop and implement software packages with 

real-time capabilities for data acquisition, system 

identification, control design and on-site commissioning. 

Energy and material savings as well as improvement in the 

quality of the products should be a result of a well designed 

control system. 

This paper presents a new approach for the design of the 

RST controller, which can be shown to cover all the linear 

control laws for linear SISO system [1]. In previous work, the 

pole placement methodology for synthesis of linear SISO 

systems produced the RST controller in the final step [2] as a  
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solution of one or more of the Diophantine equations [2]-[5]. 

However, Diophantine equations do not have a unique 

solution, and different possible solutions of the RST controller 

parameters have different implications related to the control 

objectives [2],[3]. To choose the RST polynomials that better 

fit the control system requirements can be a very difficult 

numerical problem, especially in auto- and self-tuning control 

systems. Because of these difficulties general RST controller 

design for industrial applications is still a challenge [7],[5].  

In this paper, we develop a procedure for design of robust 

RST controllers based on the use of convex optimization. We 

develop methods to turn the Diophantine equations and robust 

stability specifications into convex constraints, and formulate 

the RST controller problem as a quadratically-constrained 

convex feasibility problem that can be solved very efficiently 

on regular compute hardware. We also utilize the absorption 

principle to specify the control objectives for the steady-state 

tracking trajectory in the presence of disturbances. The 

methodology is illustrated through an example of the controller 

design for the flexible coupled motor servo drive with load 

[12]. 

 

II. PROBLEM FORMULATION AND DESIGN STEPS 

In the RST control structure shown in Fig.1, the plant is 

described by its pulse transfer function or by polynomials 

B(z
-1

) and A(z
-1

), the control structure is given by polynomials 

R(z
-1

), S(z
-1

) and T(z
-1

), r is the reference signal, and signals d 

and v model the influence of external disturbances and noise 

on the system output y. 

. 
Fig.1 RST control structure. 
 

The nominal model of the plant in Fig.1 is given by  
 

0 1

0 1

0 1

( )
( )

( )

B z
W z

A z

−

−

−
= . (1) 

The uncertainties of the plant modeling may be adequately 

described by a multiplicative bound α(ω) [2],[6] 
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( )1 0 1 1( ) ( ) 1 ( )W z W z W zδ− − −= +  (2) 

( ) [ ]( ) , 0,
j T

W e T
ωδ α ω ω π− ≤ ∈ , (3) 

 

where W(z
-1

) represents the actual plant behavior. 

Under the nominal conditions ( 1 0 1( ) ( )B z B z− −≡ and 

1 0 1( ) ( )A z A z− −≡ ), the closed-loop transfer functions 

1 1( ) ( )y z r z− − , 1 1( ) ( )y z d z− −  and 1 1( ) ( )y z zν− − are easily 

derived from Fig. 1 as 
 

1 1 0 1
1

1 0 1 1 0 1 1

( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )
ry

y z T z B z
G z

r z A z R z B z S z

− − −
−

− − − − −
= =

+
 (4) 

 
1 0 1 1

1

1 0 1 1 0 1 1

( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )
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y z A z R z
G z
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− − −
−

− − − − −
= =

+
 (5) 

 
1 0 1 1

1

1 0 1 1 0 1 1

( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )
y

y z B z S z
G z

z A z R z B z S z
ν

ν

− − −
−

− − − − −
= = −

+
. (6) 

 

The system set-point response can be adjusted according to 

desired system closed-loop transfer function (pole placement 

problem [2])  
 

11
1

1 1

( )( )
( )

( ) ( )

de
de

de

B zy z
G z

r z A z

−−
−

− −
= = . (7) 

 

Namely.  
 

11 11 0 1

0

0 1 1 0 1 1 1 1 1

0

( )( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

polde

de pol

N zB z A zT z B z

A z R z B z S z A z A z K z

−− −− −

− − − − − − −
= =

+
, (8) 

 

where A0(z
-1

) is the so-called observer polynomial [2]. The 

condition of the desired dynamical behavior of the nominal 

closed-loop system is then given by Diophantine equation 
 

0 1 1 0 1 1 1( ) ( ) ( ) ( ) ( )polA z R z B z S z K z− − − − −+ ≡ . (9) 

 

In order to specify the desired steady-state behavior of the 

system, according to Fig. 1, we use the absorption principle [6] 

and derive the error signal as 
 

0 0 0

0 0 0 0 0 0

TB B S A R
e r y r r d

A R B S A R B S A R B S
ν= − = − − −

+ + +
 (10) 

 

where, for the sake of brevity, variable arguments
 
are omitted 

from notations of variables.  

The absorption principle has the intention to embed the 

disturbance model into the control algorithm in order to 

suppress or reject the influence of the disturbance on the 

steady-state value of the process output. In the case of regular 

disturbances belonging to a certain class [6]: 

 

{ }1
( ) ( ) 0, for (deg )f z f k k

−∈ Φ = ≥ Φ , (11) 

 

we will call the polynomial 1( )z
−Φ  the absorbing polynomial. 

The absorption filter 1( )z
−Φ  is designed for a known class of 

disturbances and can be simply resolved as [3] 

 
1

1 1 1

1

( )
( ) ( ), from ( ) .

( )

w

w

w

N z
z D z f z

D z

−

− − −

−
Φ = =  (12) 

 

In the case of a stochastic disturbance d(t), the absorption filter 

should suppress as much as possible the effects of the 

disturbance on the system output. Thus, for a low frequency 

disturbance d(t), which can be generated by double integration 

of the white noise, an appropriate choice of the absorption 

filter is 1 1 2( ) (1 )d z z
− −Φ = −  that corresponds to absorption of 

a linear (ramp) disturbance [6].  
The absorption conditions of the steady-state influence of the 

external disturbance d(t) and the reference input r(t) on the 

error tracking system signal (10) are derived from (11) and 

(10) as  
 
0 1 1 1 1
( ) ( ) ( ) ( ) 0d dA z R z z M z

− − − −− Φ ≡  (13) 

 
0 1 1 1 1 1( ) ( ) ( ) ( ) ( )r r polB z T z z M z K z− − − − −+ Φ ≡  (14) 

 

Then, the system of Fig. 1 satisfies the condition of robust 

stability if the nominal plant is stable and the following 

inequality holds [2]6 
 

( )
[ ]1

0 1 1 0 1 1

0 1 1

, 0,

( ) ( ) ( ) ( )

( ) ( ) j T
z e T

A z R z B z S z

B z S z ω ω π

α ω
− −

− − − −

− −

= ∈

+
≤ . (15) 

 

By taking into account (9) the condition of robust stability (15) 

can be transformed to 
 

[ ] ( )
[ ]

1

1

1

1

0 1, 0,
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( )
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j T

j T
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z e T
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ω

ω
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ω π
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−

−
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= ∈
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Suppression of disturbance and noise effects on the system 

output can also be expressed by relations 
 

[ ]

[ ]

1

1

0 1 1

0 1 1 0 1 1

, 0,

1

, 0,

( ) ( )
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1

1
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, 0,

1
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( ) ( ) ( ) ( )

( )
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z e T
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ω

ω
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−
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where  
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1 1

, 0, , 0,
( ) , ( )
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are the desired or required transfer functions whose 

magnitudes at all frequencies should be as small as possible. 

From (18), the condition of noise suppression can be 

expressed as 
 

[ ]
[ ]

1

1

1

1

0 1, 0,

, 0,

( )
( )

( )
j T

j T

poldesired

y
z e T

z e T

K z
S z G

B z
ω

ω

νω π
ω π

− −

− −

−

−

−= ∈

= ∈

≤ . (19) 

 

Given the above formulation, the controller design 

procedure can be formulated in the following steps: 1) Define 

the desired characteristic polynomial Kpol(z
-1

), frequency 

function ( )desired

yGν ω  [ ]0, Tω π∈ , and the desired absorption 

filters 1( )
r

z
−Φ and 1( )

d
z

−Φ  based on a priori information 

about signals d(t) and r(t); 2) Identify the plant model 

yielding 0 1( )A z− , 0 1( )B z−  and ( )α ω ; 3) Check whether the 

control specifications are realistic. If not - redesign the 

specifications under 1) and/or do a more accurate 

identification procedure under 2); 4) Solve the system of three 

Diophantine equations (9), (13), (14) with inequalities (16) 

and (19) to obtain the controller polynomials R, S and T. 

Challenges and tradeoffs involved in choosing the right set 

of control specifications are discussed in [1]-[3], and in 

general represent nontrivial design decisions. A possible 

choice of characteristic polynomial Kpol(z
-1

) [6] is given as 
 

( )1 1

1

( ) 1 , 0 0.9

n
i

pol i i

i

K z b z b− −

=

= − ≤ ≤∏ , (20) 

 

which corresponds to a strictly aperiodic closed-loop system 

step response. Smaller values of n and bi correspond to higher 

speed of the system response and lower degree of system 

robustness. Thus in tuning of n and bi, it is necessary to start 

with a certain value of n and smaller values of bi and then to 

increase bi gradually. If for the allowable values of bi the 

desired criterions are not satisfied, the value of n should be 

increased to the next integer and so on. 

Another desired criterion is a condition for disturbance 

suppression (17), which can be reformulated as  
 

[ ]
[ ]

1

1

1

1 1

0 1, 0,

, 0,

( )
( ) ( )

( )
j T

j T

poldesired

dy
z e T

z e T

K z
R z G z

A z
ω

ω
ω π

ω π

− −

− −

−

− −

−= ∈

= ∈

≤ . (21) 

 

While directly specifying desired

dyG  is desirable from user 

perspective, it can be overly constraining in practice due to the 

inherent tradeoff with the robustness criterion (15), leading 

often to infeasible optimization problem formulations. Instead, 

to allow additional degrees of freedom for the optimization 

problem, while retaining some performance guarantees, we 

specify the steady-state error behavior utilizing the absorption 

principle as shown in (13) and (14).  

To further illustrate this inherent tradeoff we can write starting 

from (9), (13), (17),  
 

0 0 0 0

pol

pol pol poldesired

d d dy pol dy pol

K A R B S R A S B

K K K
M G K G K

α α α

= + ≤ +

≤Φ + = + ≤ +

, (22) 

 

where the first inequality is the triangle inequality and the 

second and third follow from imposing constraints in (16) and 

(21). Simplifying, by diving with non-zero polynomials, we 

see that (wherever Kpol is non-zero, which is almost 

everywhere as the set of zeros is finite for any polynomial) we 

must have  
 

1 1
1

d d desired

dy

pol

M
G

K α α

Φ
≤ + ≤ +  (23) 

 

at every discrete frequency. This means that frequencies where 

our model’s uncertainty is high are also critical for disturbance 

rejection. Also, from (23) 

 

[ ]1

1 1

1

, 0,

1
( )

( ) ( )
1

( )
j T

d d

pol
z e T

z M z

K z
ω ω π

α ω

− −

− −

−

= ∈

≤
Φ

−

. 

(24) 

 

Relations (23) and (24) represent a useful check if the given 

performance and robustness specifications are not 

simultaneously achievable. 

The control design problem given by (9), (13), (14), (16) 

and (19) can be described as a convex optimization problem. 

Unlike a pole placement problem [2], this problem formulation 

enables us to look at a broader range of solutions to 

Diophantine equations, while still constrained by the 

robustness stability and noise suppression criterions, leading to 

potentially better controller performance. 
 

III. CONVEX OPTIMIZATION AS A DESIGN TOOL 

In this section we show how the previously described design 

specifications of the robust RST controller can be transformed 

into a standard convex program. This step enables us to use 

readily available optimization software for efficient resolution 

of design constraints and obtaining the desired RST 

parameters. In our case the resulting convex programming 

formulation is a quadratically constrained (QC) feasibility 

problem. 

In order to use the available convex optimization packages, 

a design problem must be convex and formulated as one of the 

standard optimization programs [10],[11]. In general, convex 

optimizations are problems of the following form 
 

0min ( )

. . ( ) 0, 1, ,i

f x

s t f x i k

Ax b

≤ =

=

… , (25) 

 

where the optimization objective (cost), 0 ( )f x , must be a 

convex function. All the constraints must be convex sets 
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defined either as sub-level sets of convex functions ( )
i

f x , or 

through linear equality constraints [8]. 

Our design goal is to determine polynomials R, S and T, 

given the performance specifications (
r

Φ ,
d

Φ , polK , desired

y
Gν ) 

and the model of the plant (
0 1( )A z

−
, 0 1( )B z

− , ( )α ω ). The 

maximum desired order of each polynomial also has to be 

specified. 

For the rest of this section we will represent the RST 

polynomials with their coefficients, ( )1,...,
Rnr r r= , 

( )1,..., Sn
s s s=  and ( )1,...,

Tnt t t=  in the standard 

representation 
 

1

0

( )
Rn

i

i

i

R z r z
− −

=

=∑ ,  1

0

( )
Sn

i

i

i

S z s z
− −

=

=∑ ,  1

0

( )
Tn

i

i

i

T z t z
− −

=

=∑
,

 (26) 

 

where , ,
R S T

n n n  are appropriately chosen degrees so that 

Diophantine equations (9), (13) and (14) can be solved. Note 

that it is easy to determine the minimum required order of 

these polynomials by analyzing the orders of predetermined 

polynomials (
r

Φ ,
d

Φ  and polK ) in the Diophantine equations. 

With this we proceed to analyze the convexity of the design 

constraints for the robust RST controller. In the most general 

setting, the inequalities in (16) and (19) do not specify convex 

sets in polynomial coefficients. To see this we consider these 

constraints at a fixed digital frequency 0ω . Then all the 

constraints can be written in the same, abstract, form 
 

0 0
0

0 0

( )
P Kn n

jl jm

l m

l m

p e c k e
ω ωω− −

= =

≤∑ ∑
,

 (27) 

 

where vector { },p r s∈ , vector k is the vector of coefficients 

of Kpol(z
-1

) and the positive constant 0( )c ω  depends on the 

nominal plant model and the uncertainty specification. 

Obviously, if this inequality is satisfied for some k�  it is 

satisfied for k− �  as well. However, it is not necessarily also 

satisfied for ( )1 1
0

2 2
k k+ − =� � . Thus these constraints are not 

jointly convex in p  and k . 

Since we already assumed that the designer has a way of 

determining a preferable pole placement, if we fix the desired 

characteristic polynomial Kpol(z
-1

), then the constraints in (16) 

and (19) become convex. In this case, as the right-hand sides 

become constants for each discrete frequency, the inequalities 

are compositions of linear functions of decision variables (the 

coefficients of the polynomials R, S and T) and the norm 

inequality defining a sub-level set, which are convex [8]. 

With this simplifying step, the conditions of robust stability 

and noise rejection given in relations (16) and (19) become 

convex, semi-infinite constraints. What this means is that the 

number of decision (optimization) variables in each constraint 

is finite (as the R, S and T polynomials are chosen with finite 

order), but the constraint must be satisfied at infinite number 

of points (every possible digital frequency). One 

straightforward technique to deal with this obstacle is to 

sample each constraint at a certain number of digital 

frequencies and impose the constraints only in those sampling 

points [9]. In this way the semi-infinite constraints (16) and 

(19) become a finite set of simple quadratic constraints on the 

finite number of decision variables, which can be expressed in 

the same, abstract, form as 
 

0

( ), 1, ,
P

i

n

jl

l i

l

p e c i N
ω ω−

=

≤ =∑ � …  (28) 

 

for some number of sampling points [ ]1,..., 0,Nω π∈ . Note that, 

since Kpol(z
-1

) are now fixed polynomials, the right-hand side 

reduces to a positive constant at each sampling point. The 

intuition behind this approach is that polynomials are nicely 

behaved, smooth functions, and we are trying to satisfy this set 

of semi-infinite constraints on a compact set (set of discrete 

frequencies). Thus if the sampling of the unity circle is fine 

enough, satisfying the constraints in a finite number of points 

will guarantee that they are satisfied on the compact set of 

interest. Since the design process is not time-critical, we will 

not pursue a more rigorous qualification of the required 

sampling grid, as the optimization can always be re-run with a 

finer grid sampling if we find the conditions of this type to be 

violated after solving. In this way we obtain one inequality 

constraint ( )
i

f x , of the formulation (25) in the form of (28). 

Thus, by requiring that the desired closed loop characteristic 

polynomial is set by the designer, and by sampling the semi-

infinite inequality constraints, we convexify the original model 

and reduce it to a finite set of convex quadratic inequalities to 

be handled by the optimization solver. 

To ensure the consistency of the model, we must also 

impose constraints that express the relationship between all the 

polynomials that factor in (16) and (19), namely the 

Diophantine relations in (9), (13) and (14). This is a much 

simpler task. Considering that optimization variables are the 

coefficients of the polynomials R, S, T, Mr and Md, and that all 

other polynomials and their coefficients are fixed, we 

immediately see that constraints (9), (13) and (14) become a 

set of linear equations on their coefficients. With polynomial 

parameterization (26) we can now rewrite (9), (13) and (14) in 

a more compact form as 
 

0

0

0 0

0d

r

a

b

d
b a

r

r

T T s

T T kt

kmT T

m

ϕ

ϕ

−

 
          =              
 

 (29) 

 

where 
h

T denotes the Toeplitz matrix for signal h. Note that in 

these equations vectors r , s , t ,
d

m ,
r

m  contain optimization 

variables, while vectors 0a , 0b , 
d

ϕ , 
r

ϕ  and k contain only 

constants. Thus we have defined the matrix A and the vector b 

in formulation (25).  
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Finally, we have not included any performance metric in our 

robust RST model, thus we can trivially assign 0 ( ) 0f x = , to 

complete our optimization program. In general, however, we 

could define a (convex) function to measure the quality of the 

controller to be optimized. 

From the previous we see that, once the desired performance 

is specified in a convenient form, synthesis of the RST 

controller that ensures robust stability to the plant uncertainty, 

certain level of performance in terms of disturbance and noise 

suppression and internal consistency of the model can be 

formulated as a QC optimization problem. 

In view of relations (22), (23) and (24) we should note that 

it might happen that the optimization has no valid solutions for 

a particular set of design specifications. Unfortunately, due to 

necessity but not sufficiency of these constraints there is no 

simple procedure to ensure that the desired controller will exist 

so that the optimization has a feasible solution. Although a 

number of obviously infeasible formulations can be 

filtered-out by using the relations (22)-(24), a significant 

number of possibly infeasible specifications still exist, leaving 

this an open research question. 

Finally we should note that the described optimization 

model of the RST controller is by no means a complete one. 

For example we might want to impose additional constraints to 

ensure that the solver only allows for stable R, S and T 

polynomials. This is known to be a non-convex constraint if 

the sets of all the stable polynomials are considered. However, 

certain convexifications (that basically reject some solutions in 

order to construct a convex, inner approximation of the set of 

stable polynomials) and parameterizations can be used to 

include such constraints in optimization design flow. Currently 

the stability of the solution is checked ex post facto and 

improving this aspect of the model is the next logical step in 

this line of work. 
 

IV. DESIGN EXAMPLE 

The proposed controller synthesis method is shown here for 

the class of motion control systems with flexible coupling. Our 

aim is to control the load shaft speed in the presence of torsion 

vibrations, system parameter variations, disturbance torque, 

and in the absence of a dedicated load side speed sensor. 

Note that many controllers already exist in the field of 

motion control, but most of them are designed by assuming an 

ideal, rigid transimission train, adopting 0
( ) 1 ( )m lW s J J s= +  

(Jm, Jl - motor and load inertia) as a simple plant model. As an 

actual plant model we utilize a model of flexible coupling of 

motor axle and load [12]. We distinguish the following 

important data (see Fig. 2) Jm=0.000620 kgm
2
, 

Jl=0.000220 kgm
2
, cs=350 Nm/rad, bv=0.004 Nms/rad.  

 
Fig. 2. Flexible coupling of motor axle and load. 

The desired close-loop system transfer function is specified 

by undamped natural frequency ωn=400 rad/s and relative 

damping coefficient ζ=0.7. The sample rate is T = 0.5 ms.  

Adopted absorption polynomials are 11r z−Φ = − , 

1 2(1 )d z−Φ = − , which fit the step and ramp disturbances. 

This formulation of the RST controller design can be solved 

within minutes, for couple of hundreds sampling points on the 

unity circle, on standard 2GHz personal computer with 2GB of 

RAM and running Ubuntu Linux. Our particular 

implementation of this optimization is done through YALMIP 

[10] parser and solved with SeDuMi [11] SDP solver. 

With the above input specifications the solver’s calculation 

of polynomials R, S and T are: R(z
-1

)=0.64-0.77z
-1

+0.395z
-2

-

0.264z
-3

, S(z
-1

)=0.5-1.1z
-1

+1.034z
-2

-0.41z
-3 

and 
1 1( ) 0.039T z z

− −= . 

The designed system has met control specifications as 

illustrated by simulation results in Figs. 3 and 4, for a system 

reference ( ) 3 ( 0.05) rad sr t h tω = − , and a disturbance via load 

torque 1 ( 0.1)NmlM h t= −  as in [12]. The disturbance effect d 

(Fig. 1) for a nominal plant ( 0 0 0
, lW d W M= ) is a ramp, while 

for the real plant in Fig. 2, the torque disturbance manifests 

itself as the output disturbance d ≡ ( ) lW s M , which is a ramp 

with superposed quasi-oscillation at plant resonance frequency 

(1468 rad/s). The results encompass the time response of the 

nominal system, and the motor and load speed time responses 

of realistic plant model structure in Fig. 2. Figure 3 shows that 

the RST controller has satisfied the robust stability.  
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αααα(ωωωω) ≤ Kpol/(B
0
 S)        (15) 

Digital frequency ωT ∈[0, π]  
Fig.3. Illustration of the robust stability test. 

 

Multiplicative bound of uncertainties α(ω) in Fig. 3 is 

calculated from the realistic and nominal plant models. The 

successful design of the robust stability and the width of the 

robustness region are obvious advantages of the proposed 

design method. The control of the plants with uncertainties at 

resonant frequencies is a very difficult task in general [6] and 

control methods for flexible drives mostly do not address these 

robust stability issues [3], [12]. 
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Fig.4. Simulation of the RST controller design efficiency. 

 

V. CONCLUSION 

Developing design methodology for an RST controller is a 

very attractive task since this topology covers the whole space 

of linear discrete SISO controllers. While some well-known 

subsets, like PID controller, have been heavily used in 

industrial applications, other, potentially more-efficient 

designs have not transitioned yet into industrial settings, 

mainly due to the lack of a computationally efficient and 

robust design methodology. The main challenges lie in 

controller tuning and plant identification procedures and their 

realization in industrial environment. 

In this paper we presented a methodology for design of 

robust RST controllers, which utilizes the computational 

efficiency of convex optimization to find the controller designs 

from a larger set of possible solutions than considered 

previously in the literature. The convex relaxations allow the 

search space to be still efficiently constrained by the robust 

stability and steady-state disturbance and noise rejection 

specifications, yielding good robustness performance at critical 

resonant frequencies. 
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