
ELECTRONICS, VOL. 14, NO. 2, DECEMBER 2010

43

Abstract—In this paper we present a general description and

a Software design of a six-legged laboratory prototype robot. The

work presented in this paper has been carried out within a

project concerning the investigation of a modular architecture for

control of mechatronic multi-link structures at the Faculty of

Mechanical Engineering, Technical University of Sofia.
The presentation describes the software that is designed to

control the hardware and the actuators and thus the whole

machine. The software design is described in detail, the division

into modules, each module and the important algorithms. Thus it

is easier to grasp is the description in the form of block diagrams.

In addition, it should include possible extensions already in the

planning.

Index Terms—Mechatronics System, Walking Robot,

Embedded Control, Modular Control, Sensor.

I. INTRODUCTION

IX legged locomotion is the most popular legged

locomotion concept because of the ability of static stable

walking. The hexapods are often inspired by nature; two

examples of such robots are Lauron [1] and Genghis [2]. Most

of the walking robots are laboratory prototypes [3, 4, 5], but

there are also few walking machines built for specific

applications, such as SILO06 [6], a six-legged robot built for

humanitarian demining.

Fig.1. Leg-to-body attachment design.

This work was supported by ВУ – ТН – 201/2006 Contract entitled

“Research of a Modular Architecture for the Control of Mechatronic Elastic

Multi-Link Devices”.

In this paper we consider a walking robot with six identical

legs equally distributed along both sides of the robot body in

three opposite pairs. The leg joints are driven by pneumatic

muscles (FESTO). So far the six-legged walking robot

(Fig. 1.) has been developed using Solid Woks.

II. HARDWARE PLATFORM

For the walking robot BiMoR (Biologically Motivated

Robot) a hierarchical and distributed computing architecture

has been selected. By distributing the possibility of concurrent

control functions is implemented on various micro-controllers.

Through the concept of distribution the need for

communication is generated. The communication based on the

master-slave principle with provides a suitable option for the

control system for keeping the protocol economical and within

the determined time limits for securing safety to the critical

functions. It is important that the used sensors provide

information about the absolute co-ordinates. The hardware of

the control system must fulfill the following tasks:

• collection and analysis of the measured variables;

• calculation of tax information;

• output control signals to the actuators.

For executing the basic legs functions like the closed-loop

joint control (valve control, recording signals from the joint

encoders) six R8C/23-microcontrollers are installed. On a

basic level each sensor and actuator are connected with the

interface board to the micro-controller board. The R8C/23

microcontroller is installed on industrial controller boards and

contains one Full CAN module, which can transmit and

receive messages in both standard (11-bit) ID and extended

(29-bit) ID formats.

III. SOFTWARE SYSTEM DESCRIPTION

The software for the leg’s local control is comprised of five

modules shown in Fig. 2 along with the related interactions.

Both processes run in cycles the first one - JC_Таск, Joint

Control, tracks down and regulates the motion of the three

joints; the second one CAN_Таск, Controller Area Network is

in charged with the Master generated messages. These

M. Milushev is with the Faculty of Mechanical Engineering, Technical

University of Sofia, Bulgaria (e-mail: mcm@tu-sofia.bg).

Design of an Open Software Architecture for

Leg Control of a Walking Robot

Mladen Milushev

S

ELECTRONICS, VOL. 14, NO. 2, DECEMBER 2010

44

processes are regulated by the Main Module.

Fig. 2. Software modules and their interactions.

A. Main module

This module is the main module (Fig. 3.). It contains only

one main function, which has the role of the operating system.

It initializes all the modules in the correct order and carries out

both processes are cyclical. It obeys to the following

initialization rules:

• The system module should be initialized before CAN

and ADC, as the CAN and ADC clocks from the Main-

clock dependent.

• ADC will be initialized before JC just as with the JC-

initialization of the A/D converter - the leg is put in the

initial position.

• CAN must be initialized before JC, as in the JC-

initialization a CAN module is used. The microcontroller

sends this message to the master: “successful

initialization” or “initialization error”.

Fig. 3. Block diagram of main function.

B. System module

Simple module to the system initialization – in this case it

will be the clock source, clock pre scalar configured and

parallel inputs and outputs defined and configured.

C. ADC module

This module does the functions of configuration and access

to the A/D converter of the microcontroller. The configuration

is done through the following steps:

• Choice and setting of the AD channels

• ADC-Clock Set (10 MHz)

• ADC-resolution set (8-bit mode)

• ADC-set mode (one-shot mode)

• A/D conversion method you choose (with Sample and

Hold)

The ADC module is currently used to measure the actual

value of each of the three joint angles provided but also for

other local sensors (for example force sensor and pressure

sensor). This will gain through an interface function. She gets

as parameters the number of analog input, and then read it very

easily to other sensors - one must know only the number of

analog input.

D. CAN module

Module to configure and control the CAN controlle -

implemented were the following functions (Fig.4.):

• CAN_Init - function for setting the CAN SFRs: CAN

clock (10 MHz), CAN baud rate (500 kbps) and CAN

mode (Basic CAN),

• CAN_ConfigRxSlot - function for setting a CAN-slot as

a CAN-RX slot. There are also interface functions to

communicate with the master available.

• CAN_SendMessage - Function to send a message to the

master via the CAN bus.

• CAN_GetMessage - When a new message is completely

received it will be copied using this function from the

CAN internal RX-buffer in a application RAM-buffer.

The execution should happen as quickly as possible

because it is being called into the CAN-RX-interrupt.

• CAN_Task - one of the two cyclic processes. This

function checks whether new messages exists in the

receive buffer and if so - they are removed (consumed)

from the buffer and processed further.

Fig. 4. Functions implemented in the CAN module.

JC module

In this module two abstract levels are introduced - leg and

joint. Each level is assigned to its own state, which is updated

regularly and individually. In Fig. 5. are shown the functions

that are to be implemented in the JC module.

Fig. 5. Functions implemented in the JC module.

ELECTRONICS, VOL. 14, NO. 2, DECEMBER 2010

45

JC_Init Function

After switching on and initialization of the system, the ADC

- and CAN-modules, each leg enters the state

LEG_STATE_POWERED_UP and "reports" on to the master.

If all six legs are prepared (the master has received six

certificates), the master sends to the 1st, 3rd and 5th leg a

INIT-command - put the leg in a starting position. Each of

these legs occurs in the state LEG_STATE_INIT and performs

an INIT-procedure:

• The leg is lifted (by the β-joint);

• The remaining two joints (α and γ) are set in start

position;

• The leg is placed (again, through the β-joint);

The first joint (angle ά) is perpendicular to the robot’s body;

the first (angle ά) and second (angle β) joints are perpendicular

то one another, while the second (angle β) and third (angle γ)

are parallel. At this point, all three joints are in their initial

position (in the state JC_STATE_STATIC_INIT, - the leg is

initialized and the state LEG_STATE_READY is set. A

confirmation message to the master will be sent. All three legs

have sent the confirmation and then sent the INIT-command to

the master of the 2nd, 4th and 6th legs. The legs are initialized

in pairs so that the body always remains stable.

JC_SetJointProperties Function

If the leg is in the state LEG_STATE_READY it can accept

set-points. They will be transferred by the master of the CAN

bus and checked through the function JC_SetJointProperties

for validity. The valid values are in the range [0x06 ... 0xF9]

or [26.5 º -26.5 º ...]. For security reasons 1º shift on the left

for both side-positions is allowed. The values represent the

start and end positions where a phase change takes place. The

"longest" step is defined, for example, at a starting value of

0x06 (26.5 º) and at a final value of 0xF9 (-26.5 º).

JC_SetLegPhase Function

When the set points are accepted the leg can be set in

motion. The command is sent again from the master through

the CAN bus. Upon receiving a suitable value (stance or swing

phase) the states of the three joints will be set depending on

the phase (JC_STATE_ROTATING_START and

JC_STATE_ ROTATING _END).

JC_Task Function

The JC_task is the second cyclic process implemented in a

state machine (Fig. 6.). Apart from the stance and swing

phases known the Master, additional ones which are used in

local control are introduced.

In each state the actual value is compared to the value of the

corresponding joint; the movement stops when the set point is

reached and the new parameters for the next state are load:

Fig. 6. State machine of the JC_Task Process.

In each state the actual value is compared to the value of the

corresponding joint; the movement stops when the set point is

reached and the new parameters for the next state are load:

• Direction of rotation - when loading a new state in

eJointState - JC_STATE_ROTATING_START or

JC_STATE_ROTATING_END;

• Turn Speed - when loading a valid (0 <= PWM <= 100)

value in uJointRotationSpeed. Currently the speed is

fixed to 100.

JC_JointStartRotating Function

This function is set by the input parameters specified joint

with the previously loaded rotation and rotational speed in

movement. Currently, the control is based on the principle

Bang-Bang. This means that there are two discrete states of the

control valves - on and off. But it is a controller using PWM

(Pulse Width Modulation) provided. This allows the speed

control. Driving the PWM signal to 0% means that the

corresponding solenoid valve is closed for the entire period;

100% value means that it is open for the entire period. A value

of 50% means that half the time it is open and other half period

it is closed. The direction of rotation determines at which

control valve (inflation or deflation) the PWM signal is

created. Is the direction from the start to the end position the

instruction is TRUE when the current value bigger or equal to

the end value is

JC_JointTargetPositionReached Function

This Boolean function performs the comparison between the

actual value and the value of the input parameters specified by

the joint. It reads the actual value of the A/D module and

compares it to the appropriate value (start or end position) in

contrast to the current direction of movement. И. е., if the

direction from the start is toward the final position, then this

function turns to be TRUE only if the actual value is > or = of

the end value. If the direction of the end is toward

the start position this function turns TRUE only if the actual

value is < or = of the end value.

ELECTRONICS, VOL. 14, NO. 2, DECEMBER 2010

46

JC_JointStopRotating function

This function has to stop the joint and is specified by the

input parameters. The stopping is done by way of using of the

PWM signal that promotes the appropriate one-or outlet valve

to 0%.

IV. PRACTICAL IMPLEMENTATION

For the development the evaluation board EVBR8C20-23

was used; the implementation is done in the “C” language. For

the compilation is used the HEW (High-performance

Embedded Workshop), 4.02 version by RENESAS. Since it is

IDE, it contains all the necessary tools:

• Compiler - to compile the software;

• Left - to the left of the compiled software;

• Flash Tool - for the program to be "registered" in the

microcontroller;

• Run-Time Debugger / Emulator - to test the program in

real environment.

In Fig. 7 the experimental test rig is shown. It includes he

mechanics-the leg prototype; hardware – microcontroller with

interfaces. The algorithms had also been tested.

Fig. 7. General view of the leg with the control.

V. CONCLUSION

Based on the implementation of control algorithms has been

shown how using a dependency analysis a process model can

be created that forms the basis for the implementation of a

real-time system. Using the example of algorithms based on

fixed-point arithmetic has been shown how the control

algorithms can be implemented efficiently and predictably

over time. In the present case a calendar-based scheduling

model could be used. By means of case consideration and

maturity provisions the real-time capability of the

implementation could be shown.

Based on the achieved results the identified approaches can

be applied for further research work. The control architecture

is complex and only manageable with appropriate and

identical design methods.

Currently, the control is based on the Bang-Bang principle.

Further experiments propose the implementation of the

discussed PWM module depending on the pressure within the

muscle and the joint’s position. This would allow certain

synchronization between all three joints in real-time.

Another advantage of the system is the open possibility for

including reflexes.

REFERENCES

[1] S. Cordes, K. Berns, "A Flexible Hardware. An Architecture for the

Adaptive Control of Mobile Robots, 3rd Symposium on Intelligent

Robotic ystems '95, 1995.

[2] http://www.ai.mit.edu/projects/leglab /robots/ robots.html.

[3] Waldron, Kenneth J., "Machines That Walk: The Adaptive Suspension

Vehicle", The MIT Press, 1989.

[4] K. Berns, V. Kepplin, R. Miller, M. Schmalenbach: "Six-Legged Robot

Actuated by Fluidic Muscles" In Proc. of the 3th International

Conference on Climbing and Walking Robots (CLAWAR), 2000.

[5] V. Kepplin, K. Berns (September 1999) Clawar 99: "A concept for

walking behavior in rough terrain", In Climbing and Walking Robots

and the Support Technologies for Mobile Machines, pp. 509-516

[6] P. Gonzalez de Santos, E. Garcia, J. Estremera and A. Armada, SILO06:

"Design and configuration of a legged robot for humanitarian

demining", Int. Workshop on Robots for Humanitarian Demining,2002

