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Abstract—In this paper we present a general description and 

a Software design of a six-legged laboratory prototype robot. The 

work presented in this paper has been carried out within a 

project concerning the investigation of a modular architecture for 

control of mechatronic multi-link structures at the Faculty of 

Mechanical Engineering, Technical University of Sofia. 
The presentation describes the software that is designed to 

control the hardware and the actuators and thus the whole 

machine. The software design is described in detail, the division 

into modules, each module and the important algorithms. Thus it 

is easier to grasp is the description in the form of block diagrams. 

In addition, it should include possible extensions already in the 

planning. 

 
Index Terms—Mechatronics System, Walking Robot, 

Embedded Control, Modular Control, Sensor. 

 

I. INTRODUCTION 

IX legged locomotion is the most popular legged 

locomotion concept because of the ability of static stable 

walking. The hexapods are often inspired by nature; two 

examples of such robots are Lauron [1] and Genghis [2]. Most 

of the walking robots are laboratory prototypes [3, 4, 5], but 

there are also few walking machines built for specific 

applications, such as SILO06 [6], a six-legged robot built for 

humanitarian demining. 

 
Fig.1.  Leg-to-body attachment design. 
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In this paper we consider a walking robot with six identical 

legs equally distributed along both sides of the robot body in  

three opposite pairs. The leg joints are driven by pneumatic 

muscles (FESTO). So far the six-legged walking robot  

(Fig. 1.) has been developed using Solid Woks. 

 

II. HARDWARE PLATFORM  

For the walking robot BiMoR (Biologically Motivated 

Robot) a hierarchical and distributed computing architecture 

has been selected. By distributing the possibility of concurrent 

control functions is implemented on various micro-controllers. 

Through the concept of distribution the need for 

communication is generated. The communication based on the 

master-slave principle with provides a suitable option for the 

control system for keeping the protocol economical and within 

the determined time limits for securing safety to the critical 

functions. It is important that the used sensors provide 

information about the absolute co-ordinates. The hardware of 

the control system must fulfill the following tasks:  

• collection and analysis of the measured variables; 

• calculation of tax information; 

• output control signals to the actuators. 

For executing the basic legs functions like the closed-loop 

joint control (valve control, recording signals from the joint 

encoders) six R8C/23-microcontrollers are installed. On a 

basic level each sensor and actuator are connected with the 

interface board to the micro-controller board. The R8C/23 

microcontroller is installed on industrial controller boards and 

contains one Full CAN module, which can transmit and 

receive messages in both standard (11-bit) ID and extended 

(29-bit) ID formats. 

 

III. SOFTWARE SYSTEM DESCRIPTION 

The software for the leg’s local control is comprised of five 

modules shown in Fig. 2 along with the related interactions. 

Both processes run in cycles the first one - JC_Таск, Joint 

Control, tracks down and regulates the motion of the three 

joints; the second one CAN_Таск, Controller Area Network is 

in charged with the Master generated messages. These 
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processes are regulated by the Main Module.  

 
Fig. 2.  Software modules and their interactions. 

A. Main module 

This module is the main module (Fig. 3.). It contains only 

one main function, which has the role of the operating system. 

It initializes all the modules in the correct order and carries out 

both processes are cyclical. It obeys to the following 

initialization rules: 

• The system module should be initialized before CAN 

and ADC, as the CAN and ADC clocks from the Main-

clock dependent. 

• ADC will be initialized before JC just as with the JC-

initialization of the A/D converter - the leg is put in the 

initial position. 

• CAN must be initialized before JC, as in the JC- 

initialization a CAN module is used. The microcontroller 

sends this message to the master: “successful 

initialization” or “initialization error”. 

 
Fig. 3.  Block diagram of main function. 

B. System module 

Simple module to the system initialization – in this case it 

will be the clock source, clock pre scalar configured and 

parallel inputs and outputs defined and configured. 

C.  ADC module  

This module does the functions of configuration and access 

to the A/D converter of the microcontroller. The configuration 

is done through the following steps: 

• Choice and setting of the AD channels  

• ADC-Clock Set (10 MHz) 

• ADC-resolution set (8-bit mode) 

• ADC-set mode (one-shot mode) 

• A/D conversion method you choose (with Sample and 

Hold) 

The ADC module is currently used to measure the actual 

value of each of the three joint angles provided but also for 

other local sensors (for example force sensor and pressure 

sensor). This will gain through an interface function. She gets 

as parameters the number of analog input, and then read it very 

easily to other sensors - one must know only the number of 

analog input. 

D. CAN module 

Module to configure and control the CAN controlle - 

implemented were the following functions (Fig.4.):  

• CAN_Init - function for setting the CAN SFRs: CAN 

clock (10 MHz), CAN baud rate (500 kbps) and CAN 

mode (Basic CAN),   

• CAN_ConfigRxSlot - function for setting a CAN-slot as 

a CAN-RX slot. There are also interface functions to 

communicate with the master available. 

• CAN_SendMessage - Function to send a message to the 

master via the CAN bus. 

• CAN_GetMessage - When a new message is completely 

received it will be copied using this function from the 

CAN internal RX-buffer in a application RAM-buffer. 

The execution should happen as quickly as possible 

because it is being called into the CAN-RX-interrupt. 

• CAN_Task - one of the two cyclic processes. This 

function checks whether new messages exists in the 

receive buffer and if so - they are removed (consumed) 

from the buffer and processed further. 

 
Fig. 4.  Functions implemented in the CAN module. 

JC module 

In this module two abstract levels are introduced - leg and 

joint. Each level is assigned to its own state, which is updated 

regularly and individually. In Fig. 5. are shown the functions 

that are to be implemented in the JC module.  

 
Fig. 5.  Functions implemented in the JC module. 
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JC_Init Function  

After switching on and initialization of the system, the ADC 

- and CAN-modules, each leg enters the state 

LEG_STATE_POWERED_UP and "reports" on to the master. 

If all six legs are prepared (the master has received six 

certificates), the master sends to the 1st, 3rd and 5th leg a 

INIT-command - put the leg in a starting position. Each of 

these legs occurs in the state LEG_STATE_INIT and performs 

an INIT-procedure: 

• The leg is lifted (by the β-joint); 

• The remaining two joints (α and γ) are set in start 

position; 

• The leg is placed (again, through the β-joint); 

The first joint (angle ά) is perpendicular to the robot’s body; 

the first (angle ά) and second (angle β) joints are perpendicular 

то one another, while the second (angle β) and third (angle γ) 

are parallel. At this point, all three joints are in their initial 

position (in the state JC_STATE_STATIC_INIT, - the leg is 

initialized and the state LEG_STATE_READY is set. A 

confirmation message to the master will be sent. All three legs 

have sent the confirmation and then sent the INIT-command to 

the master of the 2nd, 4th and 6th legs. The legs are initialized 

in pairs so that the body always remains stable. 

JC_SetJointProperties Function  

If the leg is in the state LEG_STATE_READY it can accept 

set-points. They will be transferred by the master of the CAN 

bus and checked through the function JC_SetJointProperties 

for validity. The valid values are in the range [0x06 ... 0xF9] 

or [26.5 º -26.5 º ...]. For security reasons 1º shift on the left 

for both side-positions is allowed. The values represent the 

start and end positions where a phase change takes place. The 

"longest" step is defined, for example, at a starting value of 

0x06 (26.5 º) and at a final value of 0xF9 (-26.5 º). 

JC_SetLegPhase Function  

When the set points are accepted the leg can be set in 

motion. The command is sent again from the master through 

the CAN bus. Upon receiving a suitable value (stance or swing 

phase) the states of the three joints will be set depending on 

the phase (JC_STATE_ROTATING_START and 

JC_STATE_ ROTATING _END). 

JC_Task Function  

The JC_task is the second cyclic process implemented in a 

state machine (Fig. 6.). Apart from the stance and swing 

phases known the Master, additional ones which are used in 

local control are introduced. 

In each state the actual value is compared to the value of the 

corresponding joint; the movement stops when the set point is 

reached and the new parameters for the next state are load: 

 
Fig. 6.  State machine of the JC_Task Process. 

In each state the actual value is compared to the value of the 

corresponding joint; the movement stops when the set point is 

reached and the new parameters for the next state are load: 

• Direction of rotation - when loading a new state in 

eJointState - JC_STATE_ROTATING_START or 

JC_STATE_ROTATING_END; 

• Turn Speed - when loading a valid (0 <= PWM <= 100) 

value in uJointRotationSpeed. Currently the speed is 

fixed to 100. 

JC_JointStartRotating Function  

This function is set by the input parameters specified joint 

with the previously loaded rotation and rotational speed in 

movement. Currently, the control is based on the principle 

Bang-Bang. This means that there are two discrete states of the 

control valves - on and off. But it is a controller using PWM 

(Pulse Width Modulation) provided. This allows the speed 

control. Driving the PWM signal to 0% means that the 

corresponding solenoid valve is closed for the entire period; 

100% value means that it is open for the entire period. A value 

of 50% means that half the time it is open and other half period 

it is closed. The direction of rotation determines at which 

control valve (inflation or deflation) the PWM signal is 

created. Is the direction from the start to the end position the 

instruction is TRUE when the current value bigger or equal to 

the end value is 

JC_JointTargetPositionReached Function  

This Boolean function performs the comparison between the 

actual value and the value of the input parameters specified by 

the joint. It reads the actual value of the A/D module and 

compares it to the appropriate value (start or end position) in 

contrast to the current direction of movement. И. е., if the 

direction from the start is toward the final position, then this 

function turns to be TRUE only if the actual value is > or = of 

the end value. If the direction of the end is toward 

the start position this function turns TRUE only if the actual 

value is < or = of the end value. 
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JC_JointStopRotating function 

This function has to stop the joint and is specified by the 

input parameters. The stopping is done by way of using of the 

PWM signal that promotes the appropriate one-or outlet valve 

to 0%. 

 

IV. PRACTICAL IMPLEMENTATION 

For the development the evaluation board EVBR8C20-23 

was used; the implementation is done in the “C” language. For 

the compilation is used the HEW (High-performance 

Embedded Workshop), 4.02 version by RENESAS. Since it is 

IDE, it contains all the necessary tools: 

• Compiler - to compile the software; 

• Left - to the left of the compiled software; 

• Flash Tool - for the program to be "registered" in the 

microcontroller; 

• Run-Time Debugger / Emulator - to test the program in 

real environment. 

In Fig. 7 the experimental test rig is shown. It includes he 

mechanics-the leg prototype; hardware – microcontroller with 

interfaces. The algorithms had also been tested. 

 
Fig. 7.  General view of the leg with the control. 

V. CONCLUSION 

Based on the implementation of control algorithms has been 

shown how using a dependency analysis a process model can 

be created that forms the basis for the implementation of a 

real-time system. Using the example of algorithms based on 

fixed-point arithmetic has been shown how the control 

algorithms can be implemented efficiently and predictably 

over time. In the present case a calendar-based scheduling 

model could be used. By means of case consideration and 

maturity provisions the real-time capability of the 

implementation could be shown. 

Based on the achieved results the identified approaches can 

be applied for further research work. The control architecture 

is complex and only manageable with appropriate and 

identical design methods. 

Currently, the control is based on the Bang-Bang principle. 

Further experiments propose the implementation of the 

discussed PWM module depending on the pressure within the 

muscle and the joint’s position. This would allow certain 

synchronization between all three joints in real-time. 

Another advantage of the system is the open possibility for 

including reflexes. 
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