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Abstract—The paper offers a new real differentiator realized 

as a closed loop system with a low-pass filter (LPF) within the 
control loop. The cascade of the LPF, with a considerable time 
constant, and an integrator is treated as the controlled object. 
The controller is of derivative (D) type with a limiter and a high 
gain. The closed loop time constant of the obtained real 
differentiator is small. The limiter and the LPF significantly 
attenuate noises. Simulation comparison between the proposed 
differentiator and the known differentiators reveals certain 
advantages of the proposed solution under appropriate 
conditions. 
 

Index Terms—Derivative estimator, Real differentiator, 
Sliding mode based differentiator. 
 

I. INTRODUCTION 
STIMATION of a real signal derivative is a well known 
and widely studied technical problem [1]-[9]. There are 

many approaches for a signal derivative estimation. The two 
main methods may be pointed out: 

1. Model-based method; 
2. Model-free method. 

In the first method, the model of the process that generates 
the signal whose derivative is required is known. Typical 
model-free differentiators are (i) Euler’s differentiator, (ii) real 
differentiator and (iii) sliding mode based differentiator [1]-
[7]. 

As well known, Euler’s differentiator is given by relation 
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1 TkfkTfTtf −−= − . (1) 

If 0→T , ff →
~

 by definition. 
 
Unfortunately, if the input signal is noisy, the obtained 

differentiator’s output will be contaminated as well. The 
amplitude of the input noise’s derivative will be amplified if 

1<T . Consequently Euler’s differentiator is not 
recommended for a wide industrial application. 
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Consider an illustrative example [2] with an input signal  

.s005.0],2,0[),sin()( =∈π= Ttttf  (2) 
Fig. 1 shows the differentiation outputs of (a) noise-free 

input and (b) input contaminated with an uniform random 
noise having an amplitude of 0.004. It is obvious from the Fig. 
1b that the Euler’s differentiator cannot be used when the 
input is significantly contaminated by noises. 

A real differentiator, defined by its transfer function as 

)1/()(/)(
~

sssfsf τ+= , (3) 
where τ - is a time constant, is recommended for industrial 
applications. This differentiator has a low pass filter (LPF) 
(1/(1+τs)). Its role is to attenuate high-frequency noises. 
Theoretically, in the noise-free case an accurate estimation can 
be obtained by choosing a small τ, Fig. 1a. However, in real 
systems with noisy inputs the constant τ  must have a higher 
value which increases the phase lag. These contradictory 
requirements can be handled only by a adopting a compromise 
between the allowed level of the noise amplitude in the output 
signal and the phase lag. 

 
 
 
 
 
 
 
 
a) 

Fig. 1.a.  Derivative of signal (2): a) noise-free case. 

 
 
 
 
 
 
 
 
b) 

Fig. 1.b.  Derivative of signal (2): b) Euler's differentiator noise case. 
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c) 

Fig. 1.c.  Derivative of signal (2): a) noise-free case; b) Euler's differentiator 
noise case; c) Conventional real differenctiator noise case. T=τ=0.005s. 

The real differentiator (3) is designed as an active control 
structure, Fig. 2. Derivative estimation of signal (2) using real 
differentiator with τ=0.005s, in the noise contaminated case, is 
given in Fig. 1c. 

 
Fig. 2.  Conventional real differentiator. 

A particular problem arises when the input signal has low 
amplitude and/or a high noise/signal ratio. Then the estimated 
derivative cannot even be recognized. 

As an example, let the input signal, ),sin(008.0)( ttf π=  
],2,0[∈t  be contaminated with the same noise as above. The 

output in this case is given in Fig. 3. 

 
Fig. 3.  Derivative estimation of signal ) sin(008.0)( ttf π= , noisy-
case, τ=0.005 s. 

It is clear that these derivative estimators cannot be used for 
wide range of applications. Pre-filtering or post-filtering 
significantly increases the phase lag so the estimated error will 
increase, also. 

There are several solutions for the model-free derivative 
estimation. The focal part of this paper is sliding mode 
differentiators [1]-[7] explained in the Section 2. In the third 
section, a new real differentiator is proposed. It is realized as a 
conventional control loop. The controller is of the D-type and 
it has a high gain and saturation. An LPF between the 
controller and the output is introduced. Significant advantages 
of the proposed solution under certain conditions over 
differentiators [1] and [2] are demonstrated using simulations. 

In the reminder of the paper the used noise parameters are 
identical to ones given above. 

II. SLIDING MODE BASED DIFFERENTIATORS 
Very high expectations have been set in application of 

sliding mode to obtain signal derivatives. The typical structure 
of these differentiators is given in Fig. 4. Their high-frequency 
switching nature requires introduction of an output LPF. 
Unfortunately, a LPF increases phase lag as well as estimation 
error. 

 
Fig. 4.  Conventional sliding mode based differentiator. 

Two sliding mode-based differentiators are of particular 
interest in this paper. The Levant's exact differentiation [1] is 
based on the second-order sliding mode approach. The 
differentiator proposed by Xu et all. [2], applies the closed 
loop filtering and uses the first-order sliding mode and the 
reaching law principle [10]. The next two subsections give 
essentials of these differentiators. 

A. Levant's exact differentiator 
Levant’s differentiator, Fig. 5, is described by the following 

relations: 
)()( tutx = , (4a) 

))()(sgn(|)()(| 2/1
1 tftxtftxuu −−λ−= , (4b) 

))()(sgn(1 tftxu −−= α , (4c) 
where (4a) is differential equation of the "controlled object" – 
an integrator, and relations (4b) and (4c) describe second-
order sliding mode controller. f(t) is the input signal, whose 
derivative is estimated by control )()( txtu = . α, λ>0 are 
gains whose values depend on the Lipchitz constant of the 
input signal f(t). The main drawbacks of Levant’s 
differentiator are the dependence of its parameters values of 
the input signal. To overcome this shortcoming an adaptive 
algorithm has been proposed in [4]. Another drawback is an 
overshoot at the beginning of the estimation. 

As an example, Fig. 6 gives the output of the Levant’s 
differentiator for the signal 

8;6);cos(5)()sin(5)( =α=λ+=→+= ttftttf , (5) 
where the parameters have been adopted from the original 
paper [1]. Runge-Kutta method with integration step of 10-4 s  
has been selected for the simulation. 

 
Fig. 5.  Levant's exact differentiator. 
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Signal true differential and estimation obtained by Levant’s 
differentiator for the noise-free case is given in Fig. 6a. The 
Fig 6b shows the estimation error. Its amplitude of 0.75 10-3 
may be taken as an excellent result. The noises in Fig. 6b are 
consequence of quantization resolution of 1,1921e-007 they 
appear because a D/A converter is introduced in the 
simulation. However, Fig. 6c shows Levant’s differentiator 
signal in the noise case. The noise in output signal is increased 
up to 0.4 (see Fig. 11a also). In such case, as was 
recommended in [1], it is necessary to use an additional LPF. 

 
 
 
 
 
 
 
 
 
 
 
 

a) 

 
 
 
 
 
 
 
 
 
 

b) 

 
 
 
 
 
 
 
 
 
 
 
 
 

c) 
Fig. 6.  Levant's differentiator: a) noise-free case; b) derivative estimation 
error for the noise-free case; c) contaminated case. 
 

B. 2.2 Xu's et al. derivative estimator  
This estimator is shown in Fig. 7. 

 
Fig. 7.  Xu’s et al derivative estimator [2]. 

Its main aims were to eliminate overshoot appearing in the 
Levant's differentiator and to minimize noise effects by 

inserting a LPF in the closed-loop. Under nominal conditions, 
i.e. with no noise, it provides soft reaching of the sliding 
hyper-surface. 

As an example in [2], differentiation of the signal was 
given. 

)50cos(50)();50sin()( ttfttf ππ=π=  (6) 
LPFs are described by the following transfer functions: 

LPF1: 1000/(1+0.000055s); LPF2: 1/(1+0.003s). 
For Levant's differentiator and the signal (6) parameters α 

and λ are: 25000 and 180, respectively [2]. Simulation results 
of both estimators are given in Fig. 8a. Fig. 8b displays the 
expanded initial phase of estimation. The estimator of Xu et. 
Al. either does not have an overshoot at all, or a very small 
overshoot. The Levant's differentiator has a significant 
deviation from the exact derivative at the start of estimation. 

Simulation for both differentiators with the same noisy 
input has similar outputs. Note very high signal amplitude, i.e. 
a very low noise/signal ratio. Also observe that the sign 
function in Xu’s et al. estimator is replaced with saturation 
element. 

For the higher noise/signal ratios, the estimator of Xu et al. 
gives a lower performance Fig. 9b, than the Levant's exact 
differentiator, Fig. 6c, for the same input signal (5). For a 
better estimation of the noisy signal derivative it is necessary 
to add one more LPF of Butterworth type [2] or to modify 
parameters in LPFs. 
 

III. A NOVEL REAL DIFFERENTIATOR 
In order to design derivative estimator that does no need 

parameters adjustment to the input signal f(t) and to 
noise/signal ratio, a new simple structure is proposed in this 
paper, Fig. 10. This structure resembles the simple real 
differentiator structure from Fig. 2, but exhibits a more 
efficient noise filtration. 

It is easy to deduce that, in the linear working regime, i.e. 
for small signals, the transfer function of the proposed 
differentiator is identical to the transfer function (3) with time 
constant )1/( KT +=τ . For a higher gain K the system has a 
low phase distortion. 

The noise in the input is significantly amplified by the 
block du/dt. Since the obtained signal passes through the 
limiter, the noise amplitude will be symmetrically saturated 
and thus averaged to zero. It is assumed that the usefulsignal’s 
derivative stays in the linear zone of the limiter. The large 
time constant of the LPF averages noises, reducing 
significantly their impact on the output. 

To verify the concept, the proposed differentiator and the 
Levant’s differentiator have been tested with a variety of 
signals. The parameters of the proposed differentiator were: 
K=105, T=10 s, limiter saturation: ±10. Integration time in 
simulation is 10-4 s. MATLAB Simulink differentiator is used 
as du/dt element. 

The differentiators have been firstly simulated with input 
signal defined by (5) in the presence of the above given noise. 
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For the Levant’s differentiator parameters are chosen as 
suggested in [1]. Simulation results are in the Fig. 11. 

 
 
 
 
 
 
a) 

 
 
 
 
 
 
 
b) 

Fig. 8.  Comparison of Levant's differentiator (α=25000, λ=180) and Xu’s et 
al. derivative estimator. 

 
 
 
 
 
 
a 

 
 
 
 
 
 
 
b 

Fig.9.  Xu’s et al. derivative estimation for ( ) ( )tttf sin5 +=  a) noise-free 
case; b) noisy case. 

 
Fig. 10.  Block-scheme of the proposed differentiator. 

Fig. 11a displays the estimation error whose amplitude is 
near 0.4 for the Levant’s differentiator. Response of the 
proposed differentiator depicted in Fig. 11b, indicates a 
shorter rise time and no overshoot in the response. Fig. 11c 
gives the estimation error of the proposed differentiator in the 

presence of noise. Comparing the results from Fig. 11a and 6b 
it can be deduced that the Levant’s differentiator has noise in 
the output even for a noise-free input. The amplitude of this 
noise is higher then the amplitude of the noises in the output 
of the proposed differentiator with a noisy input. 

 
 
 
 
 
 
a) 

 
 
 
 
 
 
b) 

 
 
 
 
 
 
 
c) 

Fig. 11.  Responses of differentiators for the signal (5), noise case: a) 
estimated error of Levant's differentiator; b) and c) response and estimated 
error of the proposed differentiator, respectively.  

 
 
 
 
 
 
 
 
a) 

Fig. 12.a.  Responses of differentiators for the signal )50sin()( ttf π=  in 
the noisy case. a) Levant’s differentiator. 

 
 
 
 
 
 
b) 

Fig. 12.b.  Responses of differentiators for the signal )50sin()( ttf π=  
in the noisy case. b) the proposed differentiator.  



ELECTRONICS, VOL. 14, NO. 2, DECEMBER 2010 

 

31

 
 
 
 
 
c) 

Fig. 12c.  Responses of differentiators for the signal )50sin()( ttf π=  in 
the noisy case. c) Starting part of the response from Fig. 12.b (zoomed). 

 
 
 
 
 
 
 
a) 

 
 
 
 
 
 
b) 

Fig. 13.a,b.  Responses of differentiators for ( ) 0.008sin( )f t tπ= : a) and b) 
Levant’s differentiator. 

 
 
 
 
 
 
c) 

 
 
 
 
 
 
 
 
d) 

Fig. 13.c,d.  Responses of differentiators for ( ) 0.008sin( )f t tπ= : c) and d) 
the proposed differentiator, noise-free and noise case respectively. 

 
 

The second example is a differentiation of the signal (6) 
polluted with noise. Levant’s differentiator parameters are 
chosen as in Fig. 8. The results are given in Fig. 12. Fig. 12a 
shows results of Levant’s differentiator while the response of 
the proposed differentiator is given in Fig. 12b. Fig. 12c 
displays starting phase of the proposed derivative estimator. It 
is apparent that there are no overshoots. 

In the next example a low amplitude signal 
)sin(008.0)( ttf π=  is used, with and without noise. The 

following parameters are chosen for the Levant’s 
differentiator: α=0.1; λ=1.7. Parameters of the proposed 
differentiator are not changed. Simulation results are given in 
Fig. 13. Fig. 13a and 13b display the response of the Levant’s 
differentiator, for a noise-free and a noisy input respectively. 
Figure 13c and 13d show outputs of the proposed 
differentiator to the same signals. 

Given simulation results indicate that the proposed 
differentiator has considerable better characteristics then 
Levant’s differentiator except in one case. Namely, in Fig. 13d 
the resolution of D/A converter has the same consequence as a 
noise of step type in the output signal of the proposed 
differentiator. The analysis of simulation point out that the 
proposed differentiator requires a D/A converter resolution 
better then 24 bits. For the given study the resolution of 32 
bits has been applied. 

Operation of the Levant’s and the proposed differentiator is 
given in Fig. 14 and Fig. 15 in the noisy case for the indicated 
signals, without any additional comments. Parameters of 
Levant’s differentiator are specified in the figures, while 
parameters of the proposed differentiator are again unchanged. 

 
 
 
 
 
 
 
 
 
a) 

 
 
 
 
 
 
 
b) 

Fig. 14.  Responses of differentiators for ( ) sin( )f t tπ π=  whose amplitude is 
saturated at ±2.8, in the noisy case: a) Levant’s differentiator 500, 35α λ= = ; 
b) the proposed differentiator. 
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a) 

 

 
 
 
 
 
 
 
b) 

 

 
 
 
 
 
c) 

Fig. 15.  Responses of differentiators, ( ) 1 0.1sin(20 ) cos(2 ),f t t tπ= + −  the 
noisy case: a) Levant’s differentiator 500, 35α λ= =  [4]; b) the proposed 
differentiator; c) estimation error of the proposed differentiator. 
 

IV. CONCLUSION 
A new control structure of real differentiator with LPF in 

the control loop is proposed in this paper. The proposed 
differentiator is compared with the well known Levant’s exact 
differentiator. The obtained simulation with a variety of input 
signals show that the proposed differentiator shows 
significantly better results for to continuous-time input 
signals. For signals obtained from D/A converter the proposed 
differentiator needs a converter of very high resolution. 
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