
ELECTRONICS, VOL. 14, NO. 2, DECEMBER 2010

12

Abstract—Navigational tasks require the efficient computation

of trigonometric functions. For the development of an electronic
compass the arc tangent is to be computed for example. The
electronic compass is model based design. Hardware solutions
are of special interest. The CORDIC algorithm stands in the
focus for the computation of trigonometric functions. It is based
on shift and add operations and permits an efficient
implementation in FPGA`s. The paper describes the model based
design concept of the compass design. It is explained how the
CORDIC algorithm works. Thereby first software solutions are
compared: Approximation using the Taylor series versus the
CORDIC Java implementation. Different hardware solutions of
the CORDIC algorithm are analyzed. A Pipeline CORDIC
processor is introduced and embedded into the electronic
compass. The developed system is validated using an example.

Index Terms—Model based design, compass, CORDIC, FPGA.

I. INTRODUCTION
HE goal of the design task is to develop an optimal
overall system under the boundary conditions of limited

resources. At the same time the costs are to be minimized and
the time to market is to be reduced. The question is: How can,
for example, different architectures be analyzed and
optimized, in order to reach this goal. First an executable
system model has to be provided, before performance
assessments can be accomplished. The modelling of the
overall system begins on abstract level. A structured approach
is essential together with the stepwise refinement of the
model. The complex design problem must be divided thereby
in a regulatory way into manageable subproblems, so that
their complexity permits a treatment. It is important to note
that the validity of the solution of a subproblem is given
always only in the context of the solution of the entire design
problem. This means, the solution of a subproblem does not
contribute automatically to the solution of the overall problem.
The solution of a subproblem is evaluated always on their
contribution for the solution of the superordinate design
problem. With this kind of modelling of the system with its
subsystems and components over all abstraction levels,

V. Zerbe is with the University of Applied Sciences Erfurt, Department of

Computer Engineering/Embedded Systems, Germany (e-mail:
volker.zerbe@fh-erfurt.de).

M. Backhaus is with the Ilmenau University of Technology, Department of
System and Software Engineering, Germany (e-mail: michael.backhaus@tu-
ilmenau.de).

internal system details on higher modelling levels are hidden.
They emerge only in the leaves of the hierarchical model tree.
The execution of the model, the simulation, now permits the
analysis of the system for limited, available resources and
system requirements.

For the design of complex, heterogeneous, integrated,
networked systems different computation models in the
architecture have to be integrated. A computation model is a
mathematical formalism which defines a set of permissible
operations for one computation and of implementation details
abstracts. Thus, concurrencies, data flows, reactive and
continuous systems, synchronisation and communication
aspects can be described adequately. Each subsystem or each
component of the whole to be modelled system should able to
use every computation model.

Of special importance is the integration of the top down and
the bottom up design for the modelling of systems. The top
down methodology permits the modelling in an abstract way.
The draft can be made clear and manageable. The given
design space by the stepwise refined component
decomposition is done until the desired degree of detail of the
system is reached. With the bottom up methodology,
subsystems and components are modelled and combined into
an overall system. So experiences from past system
developments can be brought into the design. Hence it follows
that both techniques for practice must be combined. This
combination of top down and bottom up is well known as the
meet in the middle strategy [2]. Anyway, the main strategy
should be the top down approach. In this case as much as
possible alternatives can be examined and optimal decisions
be made. Performance parameters can be refined stepwise or
can be represented as an annotation in the system modell
through the bottom up methodology. These parameters are
helpfull to accomplish performance assessments of the system.

II. MODEL BASED DESIGN
At present time complex, embedded, networked systems are

developed purely requirement oriented (requirement based).
System requirements are gathered to provide paper
specifications from different sources. On this basis many
distributed developer teams develop a detailed design for the
subsystems and components. After reaching an accepted
design the validation and the test of the overall system is to be

Model Based Design of an Efficient CORDIC
Algorithm Implementation

Volker Zerbe and Michael Backhaus

T

ELECTRONICS, VOL. 14, NO. 2, DECEMBER 2010

13

done. Therefore errors during the design process will be
discovered often very late. The design based on executable
models (model based design) has the potential to increase the
productivity of the system design process substantially. This
design strategy is model driven and begins already in the early
design phases with the development of an executable
specification. This executable specification is directly linked
with the system requirements. In the center of the overall
model based design process stands the to be modeled complex
system, the executable model. It is refined sequentially,
stepwise. By the linkage of the executable model with the
system requirements inconsistencies in the system
requirements can be found very timely found by simulation.
During the overall design process it can be examined whether
the requirements correspond to the design and which effects
will be caused by the suggested change in the system
requirements [4]. The model based design has the following
conspicuous characteristics in relation to the requirement
based design, (in extracts):

• The investigation of the dynamic behavior of the
system becomes already possible in the early phases of
the design process.

• Based on simulatable alternatives and associated trade
off analyses design decisions can be made.

• Only one model is used on different design levels.
• Nonfunctional requirements can also be modelled and

validated.

III. MLDESIGNER
MLDesigner [10] is a tool for the design of complex

systems on mission and system level. This approach integrates
architecture, function and application scenarios in only one
development environment on a very abstract level.
MLDesigner is a multi domain simulator and supports the
modelling in discrete event (DE), synchronous data flow
(SDF), continuous time (CT), finite state machine (FSM) and
other computation models. Different computation models can
be combined in order to model a system [12]. Furthermore a
system model can be represented with its components in an
arbitrary depth of detail. On this basis system performance
evaluations can be accomplished. A comparison and an
evaluation of different tools for the design on system level
was made in [11].

IV. THE ELECTRONIC COMPASS MODEL
An electronic compass is able to continuously indicate [6]

the azimuth angle. Two magnetic field sensors, KMZ51 by
Philips, generate voltages Vx and Vy from which the azimuth
can be determined then.

arctan arctaney y

ex x

H V
H V

α = = (1)

Hex and Hey are vectors in the earth field, see Fig. 1.

This picture shows three dimensional the earth field
vectors. The x − y plane lies parallel to the earth surface. The
azimuth has to be computed. The angle δ, the inclination, is
the tilting angle of the magnetic field lines. This angle is
different for different positions on the earth (at the north pole
differently than in Ilmenau or at the equator). The declination,
λ, between magnetic and the true geographic north amounts to
approximately 11,5 degrees.

An executable model for an electronic compass was
developed with the help of the system design tool
MLDesigner. The to be modeled system is a data flow
oriented system [1]. One source (magnetic field sensor)
produces continuously tokens (x − y voltage data) which are
consumed by the following nodes (amplifier, converter,
processor, display). Basis for the modeling is the SDF
computation model. The goal is the development of an
optimal overall system. Fig. 2 shows the overall system of an
electronic compass. The model can be formally verified. For
example for SDF graphs the following applies:

Definition 1 (Deadlock): Is a computed Schedule not more
continuable, since no more node can fire, then a deadlock is
present. Cycle free graphs are deadlock free.

The top level compass model is therefore deadlock free in
the sense of a SDF graph.

The module sensor supplies corrected (offset, sensitivity,
orthogonality, temperature compensation) sensor outputs
(voltage data). An operational amplifier circuit, modeled in
the module amplify, is amplifying the weak sensor output
signal. These voltage data are analogue digital converted in
the module A/D Conv. Here for example different parameters
for converters are adjustable. The computation of the arc
tangent is modeled as a main function in the module CORDIC
processor. Pure software solutions are examined based on the
Taylor series and the CORDIC implementation. Further the

Fig. 1. Earth field vectors.

Fig. 2. Top-Level MLDesigner Compass Model.

ELECTRONICS, VOL. 14, NO. 2, DECEMBER 2010

14

focus is directed on a FPGA (field programming gate array)
implementation. The module display is a data sink. Only
tokens are consumed. The azimuth angle α is written as output
data.

A. The CORDIC Algorithm
The CORDIC algorithm was introduced 1959 for the first

time by Jack Volder [5]. CORDIC is the abbreviation for
coordinate rotating digital computer. Starting point for the
development of the CORDIC was the desire to handover the
continuous computation of navigation algorithms to digital
systems. The world of the digital signal processing is
dominated by microprocessors. On one side they are low
priced and extremely flexible, on the other side they are often
not really fast enough for heavy DSP (digital signal
processing) tasks. Available reconfigurable hardware makes it
possible to achieve a higher speed in computation compared
to the traditional software approach. Unfortunately for
microprocessor based systems, optimized algorithms are not
well implementable in hardware. Nevertheless, there exists a
multiplicity of hardware efficient solutions. Among them
there is also a class of iterative solutions for trigonometric
functions. John Walther [7] extended the CORDIC theory.
Thus using the CORDIC computation of hyperbolic,
exponential and logarithmic functions are also possible. Kota
[8] has accomplished error and load analyses.

All computations of trigonometric functions are based on
vector rotations. The vector E0 is rotated around the angle θ,
see Fig. 3. The vector En results.

0 0cos ix rθ= 0 0sin iy rθ=

()1 0cosi ix rθ θ+ = + ()1 0sini iy rθ θ+ = +
The general rotation transformation in matrix form results

to
0

0

cos sin
cos sin

n

n

x x
y y

θ θ
θ θ

−⎡ ⎤ ⎡ ⎤⎡ ⎤
= ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦
 (2)

or in a different way of writing:
0

2
0

1 tan1
tan 11 tan

n

n

x x
y y

θ
θθ

−⎡ ⎤ ⎡ ⎤⎡ ⎤
= ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦+⎣ ⎦ ⎣ ⎦
.

The rotation around the angle θ is realized by a sequence of
rotations around the angular αi.

1

0

n

i i
i

dθ α
−

=

= ⋅∑ mit { 1,1}id ∈ − (3)

The angle θ is approximated by an alternating approach. A

too far rotation is compensated by a change of sign. To control
the direction of the rotation an auxiliary variable zi is
introduced.

0z θ= 1i i i iz z d α+ = − ⋅
1 0
1 0i

z

z
d

z
≥⎧

= ⎨− <⎩

In order to simplify the rotation equation [9], the rotations
are replaced by pseudo rotations, see Fig. 4. Thus the length
of the rotating vector changes by a well known angle with a
constant factor.

2
1 1 tani i ir r α+ = ⋅ + (4)

Let tan 2 , 0... 1i
i i nα −= = − .

Thus the following new, simplified rotation equations
result:

1

1

1 2
2 1

i
i ii

i
i ii

x xd
y yd

−
+

−
+

⎡ ⎤− ⋅⎡ ⎤ ⎡ ⎤
= ⋅⎢ ⎥⎢ ⎥ ⎢ ⎥⋅⎣ ⎦ ⎣ ⎦⎣ ⎦

 (5)

()1 arctan 2 i
i i iz z d −
+ = − ⋅ (6)

For the computation of the different functions the CORDIC
can operate in two modes. These are the rotation and the
vector mode. For the computation of the arc tangent the vector
mode is used. The given vector is always rotated so that the
absolute value of its y component is reduced. The rotation
angle is signed accumulated thereby. After processing all
iteration steps, the following equations results:

()2 2 2
0 0

0
0

0

1 2

0

arctan

i
n

n

n

x x y

y
y

z z
x

−= + +

=

= +

∏
 (7)

Choose z0 = 0, so zn is equal to the desired azimuth.

B. Algorithm Analysis
In the module CORDIC processor, see Fig. 2, the arc

tangent is modeled. First an approximation, using the Taylor
series, is compared with the CORDIC algorithm. Both
algorithms were implemented directly in the MLDesigner
model using the programming language C.

1) Approximation using the Taylor series
Taylor series expansions sometimes show a slow
convergence and a numeric instability and require
many multiplications additionally. The description
complexity is nevertheless low, see the following Java
code.

Fig. 3. Vector transformation.

Fig. 4. Pseudo rotation.

ELECTRONICS, VOL. 14, NO. 2, DECEMBER 2010

15

public static double taylor_atan2(double y,

double x, double math, int n){
double z=y/x;
double result=0;
double numerator=z;
double denominator=1;
z*=z;
for(int i=0; i<n; i++){
result+=enumerator/denominator;
numerator*=-z;
denominator+=2;}

return Math.toDegrees(ergebnis);
}

2) CORDIC Java implementation

In comparison with the approximation using the
Taylor series the CORDIC needs only simple shift and
add operations as well as a LookUpTable operation.
The description complexity is comparable with that of
the Taylor implementation.

public static double cordic_atan2(double y,
double x, int n){

double newX;
double z = 0;
double half=1;
int d=1;
for(int i=0; i<=n; i++){
if(y>=0) d=-1; //direction of rotation
else d=1;
newX=x-d*half*y;
y=y+d*half*x;
x=newX;
z=z-d*angles[i]; //precalculated angles
half/=2;}
return z;}

}

The simulation of both modeled algorithms produces the

following results, which are exemplary summarized in a table.
First the number of iterations was investigated, which leads to
an accuracy of ≤ 0.001° concerning the reference angle.

x y ref. angle CORDIC
(iterations)

Taylor
(iterations)

0.92
0.72

0.39
0.69

22.97272
43.78112

12
14

5
64

If the number of iterations is set to 16 for both algorithms,

then the accuracy of the results varies very strongly. In
particular the Taylor algorithm shows clear weaknesses
regarding the accuracy, see table below.

x y ref. angle CORDIC
(error)

Taylor
(error)

0.92
0.72

0.39
0.69

22.97272
43.78112

0.0134
0.0115

0.0000
0.2286

The CORDIC obtains a high accuracy of the computed

result for a constant number of iterations in the entire
coordinate system. Introducing the pseudo rotations and the
represented simplifications the CORDIC is limited to only two

shift, three add/sub operations and one LookUpTable
operation. That way the system is also efficient implementable
in hardware.

In the sense of the model based design the CORDIC
processor, see Fig. 2, is now modelled in a third variant with
MLDesigner using logic elements/finite state machines
(FSM). The specified CORDIC is validated in the context of
the compass model by simulation. This validated specification
is the basis for an implementation on a Cylone II EP2C35
FPGA, or in other words, the validated MLDesigner model is
input for the Quartus II Web edition, the FPGA development
environment of the company Altera.

V. IMPLEMENTATION
For the implementation in hardware different design

variants are possible. These designs differ regarding the
execution time, hardware costs (number of logic cells) and the
principle suitability for the implementation on a FPGA.

1) Bit parallel iterative CORDIC processor
Each of the three to be solved functions xn, yn and zn
are directly implemented in hardware, see Fig. 5. The
shown processor represents an iterative CORDIC
structure.
The function for the determination of the direction of
rotation di determines itself in the rotation mode
through sign(zi) and in the vector mode through
sign(yi). At the beginning of the processing the initial
values x0, y0 and z0 are loaded into the registers. This
is done via the upstream multiplexers. In one iteration
step the values are loaded from the registers into the
adders/subtracters and the shift registers. The results
of the computations are then loaded again into the
individual registers via the multiplexers. The angles
for the computation of zi are stored in successive
addresses in a ROM. So one sufficient incremental
access is enough. After processing of the last
iterations the result of the respective variables can be
read directly at the outputs (the adders/subtracters). In
this design the arithmetic and the shift operations are
implemented with data word length. This
implementation does not lead to an efficient solution.
The signals are passing a high number of FPGA cells.
This leads to a slow design with a high number of
logic cells.

2) Bit serial iterative CORDIC processor
A more compact method arises as a result of the use of
bit serial arithmetic. A substantially higher clock than
in the bit parallel variant is reached. This design
consists of three bit serial adders/subtracters, three
shift registers as well as one serial ROM. Thus it
needs a minimum of hardware costs. The shift
registers are in the length wise identical to the word
length. For the initialization the data are loaded into
the shift registers via the multiplexers. Each iteration

ELECTRONICS, VOL. 14, NO. 2, DECEMBER 2010

16

needs exactly w clock cycles (w is the word length).
The whole word is loaded into the adders/subtracters
and afterwards it is pushed again into the shift
registers. At the beginning of every step the sign of
the variables is read and passed on to the
adders/subtracters. After the last iteration the words
are pushed to the outputs, at the same time a new
word can be initially loaded again already. The
advantage of this design is in the simple and minimal
hardware. This permits to work with a very high clock
frequency, which is necessary for the high number of
clock cycles.

3) Bit parallel combinatorial CORDIC processor
Beside the iterative design variants, where n iterations
for the computation are needed, there are also other
possibilities to implement the CORDIC. One of these
possibilities, described in [13], is the so called
unrolled CORDIC processor. The idea thereby is to
implement the hardware for every individual iteration
step. This design variant is shown in Fig. 6.
This structure has some advantages. Because each
iteration uses their own elements, always the same
operations are executed. So the shift registers are not
required and can be hard wired, because the same

number of shift operations always achieved. The same
is valid for the angles. They are a constant for each
iteration step. That means, there is no need to use
memory and the values are likewise hard wired. So
there is no need of registers at all. The structure
reduces the number of adders/subtracters. But that
purely combinatorial structure has also its
disadvantages. The processing time is accordingly
high due to the multiplicity of the elements. However
this structure is faster than those of the iterative
variants, because the time for initialization and setup
and hold of the registers is completely omitted.

4) Pipeline structure
The preceding structure is simply implementable as
pipeline structure. Between the add and sub blocks
pipeline registers are connected. So for a pipeline
architecture only a few additional hardware costs are
needed. The advantage is that with a filled pipeline
after each clock a result can be read on the outputs.

Particularly the variants of bit serial iterative CORDIC
processor and the pipeline structure were examined. Both
MLDesigner models are transformed into the Quartus II
model. The chip analyses show the following results:

 Bit serial iterative Pipeline

structure
Logic elements all
Logic elements CORDIC

1469
887

2526
1934

number register all
number register CORDIC

640
121

1477
958

In the compass implementation for the computation of the

arc tangent the pipline structure was used. The clock diagram,
see Fig. 7, shows for every clock the data at the input of a
pipeline step. The steps 1, 2 and 5. are represented.

On the basis of the CORDIC pipeline structure the
complete compass was implemented on a FPGA. The top level
compass des ign is shown in Fig. 8.

The system is simulated/validated in the tool chain:
MLDesigner, Quartus II Web edition and tested as a real
system. As a test scenario a rotated house of the St. Nicholas
is used, see Fig. 9. A real scenario could be a navigational task
in a robot system [3].

When pacing down the house of the St. Nick the compass
continuously supplies the expected azimuth angles per clock,
see Fig. 10. The implementation runs with 50 MHz and the
individual blocks from figure 8 have the following number of

Fig. 5. Bit parallel iterative CORDIC processor.

Fig. 6. Bit parallel combinatorial CORDIC processor.

Fig. 7. Waveform.

ELECTRONICS, VOL. 14, NO. 2, DECEMBER 2010

17

clock cycles:
• convert_start 3 clocks
• cordic_pipeline 16 clocks
• convert_end 2 clocks
• convert_bcd 6 clocks

VI. CONCLUSION
An electronic compass has been developed consequently

model based. First an abstract system model was built using
MLDesigner. So already in the early design phases
performance analyses for system could be accomplished. In

the special focus stands thereby the CORDIC algorithm. The
model was stepwise refined and implemented by Quartus II on
a FPGA. It was shown that the model based design using a
tool chain allows extensive analyses and generates a fast, clear
implementation.

REFERENCES
[1] E. A. Lee, D. G. Messerschmidt, Static Scheduling of Synchronous Data

Flow Programs for Digital Signal Processing. IEEE Trans. Comput. Vol
C-36, no 1 pp. 24-35, Jan. 1987.

[2] K. D. Mueller Glaser, Systems Engineering in Microsystems Design.
IFIP Workshop on Modelling of Microsystems. Stirling Scotland, 1997.

[3] M. Milushev, N. Krantov, V. Zerbe, Scalable Modular Control
Architecture for Walking Machines. ICEST 2007, Ochrid, Macedonia,
24-27 June 2007, pp. 901-903.

[4] F. Lohse, V. Zerbe, Model based Performance Estimation in ZigBee
based Wireless Sensornetworks. 27th MIEL 2010, IEEE International
Conference on Microelectronics, Nis, Serbia, 16-19 Mai 2010, accepted.

[5] J. E. Volder, The cordic trigonometric technique. IRE Transactionon
Electronic Computers, EC-8, pp 330-334, 1959.

[6] B. Andjelkovic, V. Litovski, V. Zerbe, A Mission Level Design
Language Based on AleC++. MIEL 2006 - 25thIEEE International
Conference on Microelectronics, Nis, Serbia, May 14-17 2006, pp 659-
662.

[7] J. S. Walther, A unified algorithm for elementary functions.Spring Joint
Computer Conf., 1971, pp. 379-385.

[8] K. Kota, J. R. Cavallaro, Numerical Accuracy and Hardware Tradeoffs
for CORDIC Arithmetic for Special-Purpose Processors. IEEE
Transactions on Computers, Vol. 42, NO. 7, 1993, pp. 769-779.

[9] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs.
Oxford University Press, USA, 1999.

[10] http://www.mldesigner.
[11] A. de A. Agarwal, C.-D. Iskander, R. Shankar, G. Hamza-Lup. System-

Level Modeling Environment: MLDesigner. SysCon 2008, IEEE
International Sys-tems Conference, Montreal, Canada, April 7-10 2008.

[12] I. Paunovic, V. Zerbe. Modeling and Simulation of Digital Systems in
different Domains. 3rd SSSS- Small Systems Simulation Symposium,
Nis, Serbia, February 12-14 2010, p. 17-23.

[13] R. Andraka. A survey of cordic algorithms for fpga based computers. 6th
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, 1998, New York, USA, p. 191-200.

Fig. 8. Top-Level compass design.

Fig. 9. House of St. Nicholas.

Fig. 10. Angle output for the house of St. Nick.

