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Abstract—The paper offers a possibility of upgrading 

conventional PD controlled positional systems into high-precision 

tracking systems using active compensators. For improving of 

tracking as well as disturbance rejection capabilities of these 

systems, two digital active compensators are used. The first one is 

feedforward improvement of tracking, whereas the second one 

represents feedback compensation of disturbances. The 

introduced compensators contain active sliding mode controlled 

subsystems. The proposed solution does not require any 

additional sensors. The proposed control extension is described as 

well as digital sliding mode controller design procedures. Also, 

simulation results in case of dc motor servo-system are presented. 

 
Index Terms— Servo-systems, Active compensators, Sliding 

mode control, Digital controllers. 

 

I. INTRODUCTION 

OSITIONING and tracking are the two basic control tasks 
that can be met in motion control. In positioning the input 

or referent signal is step function. It is required to provide as 
fast and accurate response as possible, preferably without 
overshoot, whereas the transient trajectory is not specified. In 
tracking it is necessary to enforce the system output to 
continuously and accurately follow the referent signal, which 
may represent very complex trajectory. Modern production 
technologies impose on control systems more rigorous 
demands. One of them is flexibility, meaning that the same 
positional servo-system equally successfully execute the both 
afore mentioned control tasks, under action of parameter 
variations and external disturbances. 

Most of positional systems in mechatronics, robotics and 
various industrial applications are realized by using 
conventional PD controllers. Such systems can ideally track 
only constant signals, but already under action of constant 
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external disturbance the positioning error occurs. In the 
applications where an accurate tracking of complex 
trajectories is required under action of disturbances, these 
systems give unsatisfactory results. Then some other control 
technique must be applied that provides simultaneously both 
accurate tracking and great robustness. One approach may be 
use of the two degree of freedom controllers, which allow the 
problems of tracking and disturbance rejection to be treated 
separately. Moreover, it is possible to independently tune the 
responses with respect to the referent signal and to the 
disturbances, [1]-[3]. Further improvement is suggested in 
[4,5] by multirate sampling.  

An appropriate solution to the described control task is 
implementation of variable structure control systems (VSCS) 
[6], whose theoretical invariance to disturbances in ideal 
sliding mode [7] is reduced to excellent robustness in practical 
realizations. That is the reason why VSCS found their largest 
application exactly in this field. As a state space technique, 
VSCS need information of all state coordinates for ideal 
tracking of arbitrary referent signals. This practically means 
the knowledge of the tracking error signal and its successive 
derivatives, and therefore the knowledge of referent signal 
derivatives. Accordingly, ideal tracking is possible only for the 
analytically known or known in advance references. Since this 
is not the case in servo-systems, tracking accuracy depends on 
a number of available derivatives of the tracking error signal 
[8]. Second order sliding mode control is suggested in [10] for 
the servo-system synthesis, where sliding mode based 
differentiator is used for evaluation of the error signal 
derivative [11,12]. Differentiators are practically useful only 
for the first and second order derivatives of the signal, whereas 
high order derivatives are completely inapplicable due to 
severe noise contamination.  

In order to further improve system accuracy additional 
disturbance compensation is often carried out. Extraordinary 
improvements were achieved in various servo-systems by so 
called active disturbance estimator (ADE) [9,13], which 
contains a sliding mode controlled active subsystem. Also, 
there is a possibility of introduction of supplemental integral 
action into VSCS that additionally increases system     
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accuracy [14].  
This paper proposes a way to upgrade the conventional 

positioning systems into a high-accuracy robust tracking 
systems by using active compensators (ACs). Since a 
conventional system needs to be improved in tracking 
capability as well as in disturbance rejection, two digital ACs 
are introduced. The first AC represents feedforward 
improvement of tracking. The second AC is actually the ADE 
[9,13] that compensates system disturbances and is located in a 
local feedback loop. These digitally implemented ACs involve 
an active control substructure based on discrete-time sliding 
mode control (DSMC). In the paper the proposed control 
extension is described in details, DSM controller design 
procedure is explained and simulation tests on DC motor are 
presented.  

 

II. IDEAL TRACKING SYSTEM 

The well-known control structure with feedforward and 
disturbance compensations is shown in Fig.1 in digital 
realization. Under certain conditions this structure can ensure 
the output signal to ideally track the reference. 

According to the structure in Fig. 1, the error signal   may 
be easily expressed in complex domain with respect to 
reference   and disturbance  : 
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Ideal tracking occurs when the tracking error is annulated 
)0)(( =ke , which is the case when it holds 
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Hence, in order to achieve ideal tracking it is necessary that 
the transfer functions of the feedforward and disturbance 
compensators represent plant inverse dynamics. This 
requirement inevitably raises the following questions: 

- how to obtain the information about disturbance if it is not 
available for direct measurement? 

- how to overcome plant parameters uncertainty and 
variations as well as unmodeled dynamics.? 

- how to realize plant inverse dynamics, since it is not a 
causal system? 

The answers to these questions are offered in the following 
consideration. 

 

A. Disturbances Estimation and Compensation 

Information about external disturbances is practically 
impossible to obtain by direct measurement. Therefore it is 
necessary to estimate the disturbance for its compensation. 
One possible structure for disturbance estimation is presented 
in Fig. 2a. In this digital realization extraction of the 
equivalent disturbance )(kq  is done using the nominal plant 

model )(zGn . Mismatch between the nominal model and real 

plant inevitably exists due to parameter variations and 
unmodeled dynamics. Hence, plant dynamics may be 
described as 

 ))(1)(()( zGzGzG n δ+= ,                                                (3) 

where perturbations are limited by the multiplicative bound of 

uncertainty [ ]TeG Tj /,0),()( πωωγδ
ω

∈≤ . The extracted 

equivalent disturbance is obtained in the form 
 )()()()()( kuzGzGkdkq kn δ+= ,                                    (4) 

indicating that the equivalent disturbance carries information 
about external disturbance, which can always be mapped onto 
plant output, and parameter perturbations and unmodeled 
dynamics, i.e. internal disturbances. 

According to Fig. 2a, plant output as a function of control 
and disturbance may be expressed as 
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If the compensation filter )(zGk  represents nominal plant 

 
Fig. 1.  Block scheme of ideal tracking system: P-plant; C-main controller; 
DC-disturbance compensator; FC-feedforward compensator. 
 
  

 
                          a)                                                     b) 
Fig. 2.  a) Disturbance estimator; b) ADE based on DSMC. 
  

 
Fig. 3.  The proposed control extension of the conventional system. 
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inverse dynamics, i.e. )()( 1 zGzG nk

−

= , output becomes 

)()()( zUzGzU n= , which shows that all disturbances are 

completely eliminated and that the nominal plant behavior is 
ensured. Unfortunately, such filter is non-causal and cannot be 
realized. 

Solution is proposed in [9] through the concept of ADE, 
Fig. 2b, where passive filter is replaced by an actively 
controlled subsystem. If DSM controller within ADE provides  

)()(ˆ kqkq = , i.e. ensures an ideal DSM regime, then controller 

output may be described as )()()( 1 zQzGkU nsm

−

= , showing 

that this subsystem acts as nominal plant inverse dynamics. 
Thus, complete disturbance rejection is achieved nominal plant 
behavior is secured. This way transforms the disturbance 
compensation problem into tracking problem of the referent 
signal )(kq . In the tracking subsystem of ADE, DSM 

controller governs nominal model, not the real plant, so there 
are not any uncertainties and all state coordinates are available. 
Generally, due to the not known in advance referent signal  

)(kq  it is possible to establish only quasi-sliding regime [15], 

resulting in nonideal disturbance rejection. However, since 
DSMC systems provide high-accuracy tracking, an excellent 
compensation may be expected, i.e. near nominal behavior. 

B. Active Compensators 

The notion from ADE may also be used in realization of 
inverse dynamics that is required by the feedforward 
compensator FC in Fig. 1, which should improve reference 
tracking capacity of the system. Theoretically designed 
structure in Fig. 1 may be practically realized as shown in   
Fig. 3. 

Disturbance compensator DC is actually an observer variant 
of ADE, which is formed by optimization of the structure in 
Fig. 2b. If DSM controller within FC establishes discrete 

sliding mode, then it holds )()()( 1
1 zRzGzU nsm

−

= , which 

shows that FC acts as nominal model inverse dynamics. Since 
DC ensures plant nominal behavior, the resulting system 
exhibits ideal tracking of arbitrary referent signal. This control 
extension is suitable for the upgrade of already existing 
systems, whose main conventional controller rG , usually PD 

type, gives modest performance in tracking of complex signals 
in the presence of disturbances. Retuning of the main 
controller is not necessary, since the proposed control structure 
requires the main controller to be designed for the nominal 
plant, which is already the case in the practice. 

Although it is known that SMC systems need measurement 
of all state coordinates, such system expansion does not 
require any additional sensors. Only input/output 
measurements are required, since ACs contain nominal 
models, which provide necessary state information for the 
DSM controllers. Stability of the overall system is secured by 
the occurrence and existence of the sliding regimes in the 
DSMC subsystems. 

  

III. DSMC DESIGN 

Both DSM controllers within KP and PK govern the 
nominal model and may be identical. The priority is to ensure 
as accurate tracking as possible in order to gain the precise 
nominal model inverse dynamics. Good results were obtained 
using DSMC algorithm [14], which guaranteed ideal tracking 
of parabolic signals. This control algorithm is based on the 
algorithm [16] enriched with the introduction of additional 
integral action with respect to the switching variable. 
Integration is activated only in the predefined vicinity of the 
sliding surface. Emergence of chattering, extremely 
undesirable phenomenon in SMC systems, is eliminated by 
imposing a linear control zone near the sliding surface [16]. 
Since the exposed control algorithm has been thoroughly 
elaborated in [14] and [13], it will be briefly described 
hereafter.  

Let the nominal plant model be in the form 
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It is a second order model representing the mechanical 
subsystem dynamics of an electromechanical positional 
system. The dynamics of the electrical part, i.e. electric drive, 
is neglected since it is much faster than the mechanical 
counterpart. Tracking error may be calculated as 

)()()(ˆ)()( 1 txtqtqtqte −=−= . The model (6) may be 

transformed into the tracking error space 
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Unlike the previous model, a disturbance vector p occurs in 
this model as a consequence of variability of the input signal q. 
The first component qa �  scan be easily compensated since 

forming of 2e  already needs knowledge of q� , which may be 

obtained using a differentiator. However, q��  cannot be reliably 

obtained by twofold differentiation due to drastic amplification 

of noises. Hence, vector T]  0[ q��=p  may be regarded as a 

disturbance vector. The discrete-time model of the system (7) 
for the given sampling period T is obtained in the form 
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Control task is to annul the tracking error, i.e. the 
trajectories of the system (8) should reach state space origin. 
Using the concept of DSMC this would mean that system 
trajectories from an arbitrary initial point should reach in finite 
time the sliding line s(k)=0, defined by the switching function 

]  [),()( 21 δδδδ
cckks == cec ,                                                (9) 

and continue to slide along the line into the origin, which 
would result in ideal tracking. System dynamics in the sliding 
mode is strictly defined by the sliding line vector 

δ
c , which 

should be chosen according  to the desired dynamics. 
 Sliding line reaching dynamics in [16] is proposed as 
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))(sgn(}|,)(min{|)(),()()1( ksTksssksks σ=ΦΦ−=−+ ,(10) 

which is accomplished according to (9) and (8) by the 
following control 

)()()()( 1 sTkkkusm Φ++=
−

δδδδ
dceAc                               (11) 

under normalization 1=
δδ

bc . This control is not feasible due 

to unknown 
δ

d , that is q�� . A feasible control 
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gives the following reaching dynamics. 
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δδ
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It is evident that control (12) has two modes: nonlinear and 
linear. Nonlinear control 
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δδ
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acts outside the zone Tks σ<|)(| , which produces the 

reaching dynamics given by 
)())(sgn()()1( kTksTksks

δδ
σ dc+−=−+ .                      (15) 

To ensure the reaching of the sliding line, the condition  
0)()]()1([ <−+ ksksks  must be satisfied. Under assumption 

that the reference is a smooth function, its second derivative is 
bounded rMq ≤|| ��  and therefore the disturbance is also 

bounded M≤||||
δ

d . Reaching is secured if the switching gain  

σ  fulfills inequality M||||
δ

σ c> . It means that the system 

trajectories will enter zone Tks σ<|)(|  in finite number of 

steps. 
Inside this zone, the control signal is linear 
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which provides )()1( kTks
δδ

dc=+ , indicating that a quasi-

sliding mode arises in a single step within a domain described 
by 

}|||||)(|{ MTsSqs δ
cee ≤= .                                              (17) 

For small sampling periods T the width of the quasi-sliding 
domain is also small, which guarantees high-precision 
tracking. If the referent signal is q is a constant or a ramp 
function, the second component of the disturbance is zero, 

0=q�� , which gives 0==== Md δ
bbp . It yields s(k+1)=0, 

that is, ideal discrete sliding mode occurs in one step that 
provides ideal tracking of ramp references. The control (16) is 
the so called equivalent control equ . 

Further tracking improvement was suggested in [14] by 
introduction of the supplemental integral action with respect to 
switching variable s(k). Namely, integration is activated only 
inside the linear control zone, only when the tracking error is 
small, i.e. in the sliding mode final stage. Activation of the 
integral action within the nonlinear control zone or distant 
from the origin is completely unnecessary and may can 
produce an unwanted overshoot. This idea is described by the 
following expression 
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where ρ  is a small positive constant. Integral gain h should 

satisfied condition 0<h<1/T to preserve system stability. 
The resulting control signal as an output of the designed 

DSM controller, created by merging the described control 
components, is summarized by 
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Because of the introduced additional integral action, which 
increases tracking accuracy, the designed DSM controller 
provides ideal tracking of parabolic signals. 

Since the main controller is already tuned by some 
conventional method, it remains to define AC sliding mode 
dynamics, which is prescribed by the selection of vector 

δ
c . In 

case of a second order system in sliding mode, due to the order 
reduction of the differential equation that describes sliding 

mode dynamics, a single eigenvalue Tez α−

=1  determines 

desired system dynamics. The desired slope α  of the sliding 
line is established if it holds 

α
δδδδ

=∧= 21 /1 ccbc .                                              (20) 

The procedure for the calculation of vector 
δ

c  in case of 

higher order systems is given in [16]. 
 

IV. SIMULATION EXAMPLE 

Permanent magnet direct current motor is considered as a 
plant, whose nominal mode is given by 
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Sampling period is T=0.4 ms. Parameters of the DSM 
controllers within ACs are set as: α=50; h=100 in DC and 

h=1000 in FC; σ=10; ρ=0.01; 210].1514490  557248.7[ −

δ
⋅−=c . 

Differentiator [12] is employed to obtain the derivatives of the 
input signals r and q. The main controller is a PD controller 
that is tuned by the following selection of the well-known 
parameters: Kr=25 and Td=1/26.5 s. The input signal that 
represents angular position reference is described by 
r(t)=5[cos(t)-cos(2.5t)]. Load torque that acts as an external 
disturbance is expressed by f(t)=200[h(t-5)-h(t-10)]+ 
+20sin(5t)h(t-12), where h(t) represents step function. 
Tracking errors obtained by simulations in case of different 
configurations are given in Fig. 4. 

Fig. 4 shows that the performance of the main controller 
only (line 1) is unsatisfactory both with respect to reference 
tracking and disturbance rejection. Activation of active DC 
(line 2) eliminates disturbances whereas tracking remains 
unchanged. Only the inclusion of active FC (line 5), which 
ensures almost ideal tracking, results in a superior response 
comparing with the conventional structure. 
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V. CONCLUSION 

The paper proposes a way to upgrade conventional servo-
systems by introduction of digital ACs. Adjoining of DC and 
FC improves system performances in reference tracking as 
well as disturbance rejection. Both compensators contain 
active DSM controlled subsystems, whose controllers are 
designed for the nominal plant. Simulation results evidently 
show that the proposed control extension ensures superior 
performance comparing to the initial system, confirming that a 
conventional positioning system becomes a robust high-
performance tracking system.  
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Line Main controller DC FC 

1 On Off Off 
2 On On. Off 
3 On Off On 
4 Off On On 
5 On On On 

 
Fig. 4.  Tracking errors of the proposed system for various configurations. 
  




