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Abstract—In this paper, the automatic classification of musical 

audio recordings into a hierarchy of musical genres is explored. 

Three features sets for representing timbral texture, rhythmic 

content and pitch content of musical audio signals are reviewed. 

We give classification results using described features and a k-NN 

classifier. Accuracy of classification of 61% for ten musical genres 

is promising and this result is comparable to the results reported 

for human musical genre classification. We also analyzed the 

significance of individual features for classification and we show 

that timbral texture features yield the best results for this dataset. 

 
Index Terms—Digital signal processing, music, musical genre, 

classification, audio recording. 

 

I. INTRODUCTION 

HE creation of huge digital musical audio databases 
coming from both the restoration of existing analog 

archives as well as the creation of the new content is 
demanding reliable and fast tools for content analysis and 
description. These tools will enable searching, browsing, and 
interactive access to the musical content. In that context, 
musical genres are crucial descriptors since they have been 
widely used for years by music dealers and librarians to 
organize music catalogs, libraries, and stores. Musical genres 
are labels created and used by humans to explore similarities 
between musicians and compositions, as well as to organize 
musical collections. They have no strict definitions and 
boundaries as they arise through a complex interaction between 
the public, marketing, historical, and cultural factors. Despite 
their use, music genres remain a poorly defined concept, which 
makes the automatic classification problem a nontrivial task 
[1]. 

In this paper, an algorithm for automatic classification of 
musical audio recordings into a hierarchy of musical genres is 
proposed. The algorithm has two basic steps. The first step is 
the representation of an audio recording using features which 
are extracted using digital signal processing techniques. The 
second step is the classification of feature vectors into the 
predefined categories. 

The paper is structured as follows. Features used for 
representation of musical audio recordings and their extraction 
are reviewed in Section II. Section III deals with the statistical 
evaluation of results of the proposed classifier and Section IV  
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contains the concluding remarks and directions for future 
research. 

II. FEATURES OF THE AUDIO SIGNAL 

To be able to classify an audio signal, it is necessary to 
represent the signal using features, which reflect certain 
characteristics of the signal in some domain, e.g. time or 
frequency. Extracted features are then used for training of the 
classifier, and classification of a new signal is done on basis of 
its features extracted using the same procedure. In this paper 
we used three types of features, namely: timbral texture 
features, rhythmic content features and pitch content features. 

A. Timbral texture Features 

Audio signals are non-stationary, i.e. their spectral 
characteristics are changing in time. Therefore, they are 
analyzed in short time intervals within which the signal can be 
considered stationary and its parameters constant. This time 
interval is called the analysis window. When intervals with 
different spectral characteristics are interchanged with certain 
regularity, we can talk about sound texture. To examine this 
phenomenon quantitatively, it is necessary to observe the 
signal in a longer interval, which is called the texture window. 
Texture window consists of several analysis windows and its 
duration is approximately one second. Research on human 
subjects has shown that humans need only three seconds of 
music recording to identify the music genre [2]. Thus, we may 
conclude that humans for recognition of musical genres use the 
musical texture, in addition to the other characteristics of audio 
signals. 

The musical texture can be quantitatively described using 
the following features which are based on the spectral 
characteristics of the signal: 
1) Spectral Centroid is computed for each analysis window. 

It is the center of gravity of the magnitude spectrum of the 
window computed via STFT: 
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where ( )tM k  is the magnitude of the Fourier transform in 

analysis window t and frequency bin k. Higher values of 
this feature correspond to more high frequencies in the 
analysis window. Value of the spectral centroid in music 
signal windows is greater than in voice signal windows, 
because musical instruments produce tones with higher 
frequencies than those of the human voice.  
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2) Spectral Rolloff is defined as the frequency Rt  below 

which 85% of the magnitude distribution is concentrated 
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The value of this feature is higher if more signal energy is 
contained in high frequencies.  

3) Spectral Flux is defined as the squared difference between 
the normalized magnitudes of successive spectral 
distributions 
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 where ( )tN k  and 1( )tN k
−

 are the normalized magnitudes 

of the Fourier transform in the current window t, and in the 
previous window t-1, respectively. Magnitude in each 
window is normalized with the sum of magnitudes at all 
frequencies in the current window. The spectral flux is a 
measure of the amount of local spectral change. 

4) Zero Crossings feature is computed in the time domain. Its 
value is the number of zero crossings in the current 
window: 
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 where ( )x m  is the signal in the window t. This feature is 

higher for unvoiced than for voiced speech. In speech 
signal, windows of voiced and unvoiced speech are 
interchanged which means that windows with low and high 
values of this features are interchanged. On the other hand 
the number of zero crossings in the window for musical 
signals is pretty much constant. 

5) Low-Energy Feature is defined as the percentage of 
analysis windows that have less RMS energy than the 
average RMS energy across the texture window. If there is 
a large number of “silent” analysis windows the value of 
this feature will be high. A large number of “silent” 
analysis windows is a characteristic of speech signals.  

6) Mel-Frequency Cepstral Coefficients: Mel-frequency 
cepstral coefficients (MFCC) are perceptually motivated 
and they are frequently used in speech recognition 
systems. In order to compute MFCC we pass the signal 
through a filter bank with central frequencies uniformly 
distributed on a logarithmic transformed frequency axis. In 
this paper we used the ISP (Intelligent Sound 
Implementation) model implementation of MFCC [3]. 

Most of these features are time-variant, i.e. their value 
changes in analysis windows in which we consider the sound 
signal to be stationary. Spectral centroid, spectral rolloff, 
spectral flux, zero crossings, and MFCC are computed for each 
analysis window. Means and variances of these features are 
computed for each texture window. On the other hand, low 
energy feature is computed for a texture window and the value 
of this feature is added to the feature vector for a texture 
window. The signal is represented with a unique feature vector 

which is a mean value of feature vectors for individual texture 
windows. 

B. Rhythmic Content Features 

Although rhythm as a music concept is easy to understand, it 
is not easy to define. Human perception of rhythm is a 
subjective experience, but basically rhythm has always been 
described as repetition of emphasized elements or segments 
within the whole composition. The regularity of rhythm, the 
relation of the main beat to subbeats, and relative strengths of 
subbeats and the main beat are some of the characteristics we 
would like to represent in a feature vector. To compute the 
feature vector, it is necessary to perform beat detection, and 
construct beat histogram (BH). The procedure for beat 
detection is based on the discrete wavelet transformation 
(DWT) and is illustrated in Fig. 1 [2]. 

The following signal processing techniques are used for beat 
analysis: 

1) Full Wave Rectification: 

 ( ) ( )y n x n=  (5) 

is applied in order to extract the temporal envelope of the 
signal rather than the time domain signal itself. 

2) Low-Pass Filtering: 

 ( ) ( ) ( )(1 ) 1y n x n y n= − ⋅ + ⋅ −α α  (6) 

using a one-pole filter with 0.99α =  is used to smooth the 
envelope. Full wave rectification followed by low-pass 
filtering is a standard envelope extraction technique. 

3) Downsampling: 

 ( ) ( )y n x kn=   (7) 

where k=16 in our implementation. Because of the large 
periodicities for beat analysis, downsampling the signal 
reduces the computation time for the computation of the 
autocorrelation without affecting the performance of the 
algorithm. 

4) Mean Removal: 

 ( ) ( ) ( )y n x n E x n = −    (8) 

 

Low Pass Filtering 

Discrete Wavelet Transform Octave Frequency Bands 

Downsampling 

Mean Removal 

Envelope Extraction 

Envelope Envelope Envelope 

Autocorrelation 

Multiple Peak Picking 

Beat Histogram 

+ 

Full Wave Rectification 

 
Fig. 1.  Beat histogram calculation flow diagram. 
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is applied in order to make the signal centered about zero 
for the autocorrelation stage. 

5) Enhanced Autocorrelation: 

 ( ) ( ) ( )
1
N

n

y n x n x n k= ⋅ −∑ . (9) 

is a method used to detect periodicities (similarities) in the 
signal, i.e. beat in our case. Rhythmic features are 
computed using Enhanced Summary AutoCorrelation 

Function (ESACF) [4].  
In order to compute the ESACF we clip the sum of 
envelopes to positive values, upsample the result with 
factor 2, and subtract it from the original clipped function.  
The same process is repeated with other integer factors 

such that repetitive peaks at integer multiples of the main 
beat are removed. The first three peaks of the ESACF that 
are in the appropriate range for beat detection are selected 
and added to a beat histogram (BH). The bins of the 
histogram correspond to beats-per-minute (bpm) from 60 
to 220 bpm. Thus, peaks in the BH correspond to the self 
similarities of the signal. 

Fig. 2 shows four beat histograms for 30s excerpts from 
different musical genres. In the upper left corner is a beat 
histogram of classics. This is a histogram of Symphony No. 40 

by Mozart. 

 

 

Fig. 2.  Beat histogram examples.
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We notice that in this composition there are no pronounced 
peaks in the histogram, as well as that the strength of the 
existing peaks is very low. This is a characteristic of the 
classical genre because of the complexity of multiple 
instruments in the orchestra, and because there is no 
pronounced rhythm section in classical music. Stronger peaks 
can be seen at the lower left, where the histogram for an 
excerpt from I Can’t Stop Loving You by Ray Charles is 
shown. This composition belongs to the jazz genre. The values 
of the histogram are pretty much equal here, as well. There are 
peaks around 80bpm and 120bpm. In the upper right the 
histogram of a rock song Come Together by The Beatles is 
shown. Two largest peaks correspond to the mean beat, at 
approximately 80 bpm, and its first harmonic (twice the speed) 
at 160bpm. It is shown heuristically that the main beat usually 
corresponds to the first or second BH peak [2]. Peaks are more 
pronounced here, because the rock genre has stronger beat. 
The highest peaks in the lower right show strong rhythmical 
structure of the hip-hop song Candy Shop by 50Cent.  

Fig. 2 indicates that the BH of different musical genres can 
be visually differentiated. The rhythm features include: 

• A0, A1: relative amplitudes (divided by the sum of 
amplitudes) of the first and second histogram peak; 

• RA: ratio of the amplitudes of the second and the  
first peak; 

• P1, P2: periods of the first and second peak in 
bpm; 

• SUM: overall sum of the histogram (indication of 
beat strength). 

 For the BH calculation, the DWT is applied to a window of 
65 536 samples with a sampling rate of 22 050 Hz, which 
corresponds to approximately 3 s. This window is advanced by 
a hop size of 32 768 samples. This larger window is necessary 
to capture the signal repetitions at the beat and subbeat levels. 

C. Pitch Content Features 

  In systems for audio analysis, pitch content is most often 
expressed by means of a Pitch Histogram (PH) [2]. PH is a 
statistical representation of the pitch content. Characteristics of 
tonality extracted from the PH form a set of tonality features. 
PH shows the number of appearances of each tone (note) in the 
musical audio recording. Histogram bins correspond to 
musical notes labeled using the MIDI note numbering scheme. 
Genres with more complex sound structures such as jazz or 
classical music tend to have a higher degree of pitch change 
than genres with simple chord progressions such as rock or 
pop music. As a consequence, pitch histograms for pop or rock 
music will have fewer and more pronounced peaks than the 
histograms of jazz or classical music. Algorithm for the 
calculation of PH is known under the name Multiple Pitch 

Detection Algorithm [4]. This algorithm is based on the model 
of two-channel pitch analysis. Block diagram of this model is 
shown in Fig. 3. Periodicity is detected by means of the 
autocorrelation function computed using:  

 2 ( ) ( )
kk

low highx IDFT DFT x DFT x
 

= + 
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 (10) 

where lowx  and highx  are signals before periodicity detection 

in lowpass and highpass channels, respectively, and DFT and 
IDFT indicate discrete Fourier transform and its inverse. The 
parameter k determines the frequency domain compression 
(for standard autocorrelation k=2, optimal k=0.67). Values 
obtained from (10) are used to calculate ESACF, as described 
in Section IIB for BH. Three dominant peaks of the ESACF in 
each analysis window are added to the histogram. The values 
of the histogram will be the highest when these peaks match. 
The frequencies corresponding to each histogram peak are 
converted to musical pitches such that each bin of the PH 
corresponds to a musical note with a specific pitch. The 
musical notes are labeled using the MIDI note numbering 
scheme. The conversion from frequency to MIDI note number 
can be performed using 

 ( )2 440
12log 69f

n = +  (11) 

where f is frequency in Hertz and n is the histogram bin (MIDI 
note number).  

 

Fig.3. Multiple Pitch Detection Algorithm. 
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where c is the folded histogram bin (pitch class), and n is the 
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FPH is mapped to a circle of fifths histogram so that adjacent 
histogram bins are spaced a fifth apart rather than a semitone. 
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 (7 ) mod 12c c′ = ⋅  (13) 

where c′  is the new folded histogram bin after the mapping 
and c is the original folded histogram bin. The number seven 
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corresponds to the seven semitones in a music interval of a 
fifth. That way, the distances between adjacent bins after the 
mapping are better suited for expressing tonal music relations 
(tonic-dominant) and the extracted features result in better 
classification accuracy. So, FPH contain information related to 
the music tonality content while UPH defines the range of 
tones.  

PHs for examples from the jazz and rock genres are given in 
Fig. 4 and 5. We can see that rock music has fewer and more 
pronounced peaks in the histogram than jazz. This is a 
consequence of the fact that genres such as jazz or classical 
have a wider range of tonality than genres such as rock or pop.  

The following features are computed from the UPH and 
FPH in order to represent pitch content: 
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Fig. 4. UPH example for Jazz. 
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Fig. 5. UPH example for Rock. 

• FA0: Amplitude of the maximum peak of the folded 
histogram. This corresponds to the most dominant pitch 
of the song. For tonal music this peak will typically 

correspond to the tonic or dominant chord. This peak will 
be higher for songs that do not have many harmonic 
changes. 

• UP0: Period of the maximum peak of the unfolded 
histogram. This corresponds to the octave range of the 
dominant musical pitch of the song. 

• FP0: Period of the maximum peak of the folded 
histogram. This corresponds to the main pitch class of the 
song. 

• IPO1: Pitch interval between the two most prominent 
peaks of the folded histogram. This corresponds to the 
main tonal interval relation. For pieces with simple 
harmonic structure this feature will have value 1 or -1 
corresponding to fifth or fourth interval (tonic-dominant). 

• SUM The overall sum of the histogram. This is feature is 
a measure of the strength of the pitch detection. 

 For the computation of the PH, a pitch analysis window of 
512 samples at 22 050 Hz sampling rate (approximately 23 
ms) is used. 

III. CLASSIFICATION OF AUDIO RECORDINGS 

The test collection used in this paper consists of 1000 audio 
records. Each audio record is 30s long and recorded mono 
with 16 bits and sampling rate of 22050 Hz. Audio recordings 
contain music from 10 different genres whose hierarchy is 
shown in Fig. 6. Some of the musical examples are 
instrumental, and some include vocals. Used audio recordings 
are of different quality because they are collected from CDs, 
radio and the Web. This collection is also used in paper [2]. 

For classification we used a K-nearest neighbor (k-NN) 
classifier with Mahalanobis distance. 10-fold cross-validation 
algorithm is used for testing [6].  
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Fig. 6. Hierarchy of musical genres. 

A. Classification Results 

Total classification accuracy for ten musical genres is 61%. 
Percentages of examples which are classified correctly genre-
wise are shown in Fig. 7. It can be seen that the classical music 
as a unique genre yields the best classification accuracy of 
90%. Metal as a unique genre is another notable example. The 
lowest accuracy is obtained for rock genre, which can be 
explained by its relations to other genres. Table 1 provides a 
detailed insight into the classification of musical genres in the 
form of a confusion matrix Columns of this matrix correspond 
to the actual genres and its rows to the predicted genres. For 
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example, cell in the 6th row and 2nd column has a value of 7, 
which means that 7% of classical music (column 2) is 
incorrectly classified as jazz (row 6). Percents of correctly 
classified genres are given on the diagonal of the matrix.  
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Fig. 7. Classification accuracy percentages. 

Confusion matrix shows that the errors in the classification are 
similar to what a human would do. For example, classical 
music is classified as jazz in compositions that have strong 
rhythm, as in the works of Leonard Bernstein and George 
Gershwin.  

TABLE I 
GENRE CONFUSION MATRIX 

 

 cl co di hi ja ro bl re po me 

cl 67 1 5 4 6 9 2 2 7 7 
co 0 87 2 1 0 12 0 0 0 2 
di 8 1 56 7 1 13 2 6 6 17 
hi 3 1 5 55 11 1 2 7 5 7 
ja 3 0 1 6 50 2 5 6 10 1 
ro 7 7 9 1 1 58 0 3 1 2 
bl 2 1 2 3 3 0 77 1 0 13 
re 0 0 1 11 7 1 0 66 9 5 
po 1 0 4 5 19 0 0 3 56 4 
me 9 2 15 7 2 4 12 6 6 42 

  
Blues genre overlaps with jazz, rock and country music, 

country with jazz and rock, reggae with hip-hop, etc. As 
mentioned, rock music has the worst classification accuracy 
and is easily confused with other genres, which is expected 
because of its broad nature. The confusion matrix for 
subgenres of the classical genre is given in Table II. Overall 
classification accuracy is 78%, which is good. It can be seen 
from the confusion matrix that the orchestral music is 
incorrectly classified as a string quartet in 28% of the cases, 
which is expected if you take into account that most orchestras 
usually include string instruments.  

Confusion matrix in Table 3 presents the results of 
classification of the subgenres of the metal genre. Overall 
classification accuracy is 65%. Classification accuracy of the 

death metal subgenre is notable. This subgenre is easily 
distinguished by the specific style of singing and the color of 
the voice, as well as by melody and the way of playing.  

TABLE II 
CONFUSION MATRIX OF SUBGENRES OF THE CLASSICAL GENRE 

 

 Piano Orchestra String Quartet 

Piano 82 0 8 
Orchestra 1 72 11 
String Quartet 17 28 81 

Heavy and trash metal are largely overlapping. It can be 
said that the trash contains heavy and vice versa, because 
heavy is the root of the metal music.  

 
Table 4 shows the classification accuracy of k-NN 

classifiers for different values of the parameter k applied to the 
three sets of musical genres. Means and standard deviations of 
correctly classified examples in cross-validation are given. In 
the first row of the table the results for random classification 
are given. 

 
In Table V the individual importances of the proposed 

feature sets in the automatic classification of musical genres 
are given. Classification is done for k = 3. The first row in the 
table is random classification, while the last line corresponds 
to the full set of features. Numbers in brackets behind the 
labels of features represent are numbers of features for that 
individual set.  

 

 
TABLE IV 

CLASSIFICATION ACCURACY MEAN AND STANDARD DEVIATION 
 

 Genres(10) Classical(3) Metal(3) 

Random 10 33 33 

kNN(1) 58 + 1 78 + 5 55 + 8 

kNN(3) 61 + 1 72 + 4 65 + 6 

kNN(5) 60 + 1 67 + 8 54 + 6 

kNN(7) 60 + 1 59 + 6 52 + 4 

 

TABLE V 
INDIVIDUAL FEATURE SET IMPORTANCE 

 

 Genres(10) Classical(3) Metal(3) 

RND 10 33 33 

PHF(5) 35 48 48 

BHF(6) 24 46 55 

STFT(9) 45 56 44 

MFCC(10) 59 70 54 

FULL(30) 61 72 65 

 

TABLE III 
METAL CONFUSION MATRIX 

 

 Heavy Trash Death 

Heavy 68 51 7 

Trash 23 46 11 

Death 9 2 82 
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As can be seen, features that are not based on the timbral 
texture but on pitch content (Pitch Histogram Features-PHF) 
and rhythm content (Beat Histogram Features-BHF) give 
worse results than the features based on the texture (STFT, 
MFCC) except in the case of the metal genre, where they 
perform approximately the same. Since the metal music is very 
melodic, rhythmic, harmonious and rapid greater accuracy is 
obtained using pitch and rhythm features. In all cases, the 
proposed set of features gives better results than random 
classification, which means that certain features give 
information about musical genres and musical content in 
general. The classification accuracy of the combined feature 
set (FULL(30)) in some cases is not significantly better 
compared to the classification accuracies of the individual 
feature sets. This fact does not necessarily imply that the 
features are correlated or do not contain useful information 
because it is possible that a specific file is correctly classified 
by two different feature sets that contain different and 
uncorrelated feature information. In addition, although certain 
features are correlated, the addition of each specific feature 
improves the classification accuracy. The rhythmic and pitch 
content features seem to play a less important role in the 
classification of the classical and metal datasets compared to 
the genre dataset. This is an indication that it is possible that 
genre datasets needs to be organized in a deeper hierarchy of 
subgenres. 

IV. CONCLUSIONS AND FUTURE WORK 

Despite the fuzzy nature of genre boundaries, classification 
of musical audio recordings can be performed automatically 
with the accuracy that can be compared to human 
classification.  

Three feature sets for representing timbral texture, rhythmic 
content and pitch content of music signals are computed and 
used for classification of musical audio recordings using a k-
NN classifier, which was tested on a large collection of various 
audio recordings. Using the presented feature set classification 
accuracy of 61% has been achieved on a dataset consisting of 
ten musical genres, as well as 78% and 65% on classical and 
metal datasets.  

We also evaluated the importance of individual feature sets 
for the classification of musical audio recordings. Furthermore, 
we examined the performance of the k-NN classifier, i.e. the 
mean and the standard deviation of the percentage of correctly 
classified examples, as a function of the parameter k, which 
affects the voting in the nearest neighbor algorithm. The 
success of the proposed features for musical genre 
classification reveals their potential for other tasks such as 
similarity retrieval, segmentation and audio thumbnailing. 

In further work we plan to additionally improve the features, 
and even add new ones, as well as to work on improving the 
algorithms for their extraction. From the analysis of the results 
we believe that the genre hierarchy should be expanded both in 
width and depth. Two additional sources of information about 
the musical genre are the melody and the singer voice. Also in 
the future research the attention should be paid to other 
semantic descriptors such as the emotions and the style of 
singing. More research of the pitch content features could also 
possibly lead to better performance. 
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